The Plurality of Worlds Part 9

If you are looking for The Plurality of Worlds Part 9 you are coming to the right place.
The Plurality of Worlds is a Webnovel created by Edward Hitchcock and William Whewell.
This lightnovel is currently completed.

a series in which each term (after the first,) is double of the preceding one. Hence, the distances of the planets conform to a series following this law, (_Bode’s law_, as it is termed.) And though the law is by no means exact, yet it was so far considered a probable expression of a general fact, that the deviation from this law, in the interval between Mars and Jupiter, was the cause which led first to the suspicion of a planet interposed in the seemingly vacant s.p.a.ce; and thus led to the discovery of the planetoids, which really occupy that region.

It is true, that the law is found not to hold, in the case of the newly-discovered planet Neptune; for his distance from the Sun, which according to this law, should be 388, is really only 300, 30 times the Earth’s distance, instead of 39 times. Still, Bode’s law has a comprehensive approximate reality in the Solar System, sufficient to make it a strong recommendation of any hypothesis of the origin of the system, that it shall account for this law. This, however, the nebular hypothesis does not.



1. There is no more worthy or suitable employment of the human mind, than to trace the evidences of Design and Purpose in the Creator, which are visible in many parts of the Creation. The conviction thus obtained, that man was formed by the wisdom, and is governed by the providence, of an intelligent and benevolent Being, is the basis of Natural Religion, and thus, of all Religion. We trust that some new lights will be thrown upon the traces of Design which the Universe offers, even in the work now before the reader; and as our views, regarding the plan of such Design, are different, in some respects, and especially as relates to the Planets and Stars, from those which have of late been generally entertained, it will be proper to make some general remarks, mainly tending to show, that the argument remains undisturbed, though the physical theory is changed.

2. It cannot surprise any one who has attended to the history of science, to find that the views, even of the most philosophical minds, with regard to the plan of the universe, alter, as man advances from falsehood to truth: or rather, from very imperfect truth to truth less imperfect. But yet such a one will not be disposed to look, with any other feeling than profound respect, upon the reasonings by which the wisest men of former times ascended from their erroneous views of nature to the truth of Natural Religion. It cannot seem strange to us that man at any point, and perhaps at every point, of his intellectual progress, should have an imperfect insight into the plan of the Universe; but, in the most imperfect condition of such knowledge, he has light enough from it, to see vestiges of the Wisdom and Benevolence of the Creating Deity; and at the highest point of his scientific progress, he can probably discover little more, by the light which physical science supplies. We can hardly hope, therefore, that any new truths with regard to the material universe, which may now be attainable, will add very much to the evidence of creative design; but we may be confident, also, that they will not, when rightly understood, shake or weaken such evidence.

It has indeed happened, in the history of mankind, that new views of the const.i.tution of the universe, brought to the light by scientific researches, and established beyond doubt, in the conviction of impartial persons, have disturbed the thoughts of religious men; because they did not fall in with the view then entertained, of the mode in which G.o.d effects his purpose in the universe. But in these cases, it soon came to be seen, after a season of controversy, reproach, and alarm, that the old argument for design was capable of being translated into the language of the new theory, with no loss of force; and the minds of men were gradually tranquillized and pacified. It may be hoped that the world is now so much wiser than it was two or three centuries ago, that if any modification of the current arguments for the Divine Attributes, drawn from the aspect of the universe, become necessary, in consequence of the rectification of received errors, it will take place without producing pain, fear, or anger. To promote this purpose, we proceed to make a few remarks.

3. The proof of Design, as shown in the works of Creation, is seen most clearly, not in mere physical arrangement, but in the structure of organized things;–in the const.i.tution of plants and animals. In those parts of nature, the evidences of intelligent purpose, of wise adaptation, of skilful selection of means to ends, of provident contrivance, are, in many instances, of the most striking kind. Such, for example, are the structure of the human eye, so curiously adapted for its office of seeing; the muscles, cords, and pullies by which the limbs of animals are moved, exceeding far the mechanical ingenuity shown in human inventions; the provisions which exist, before the birth of offspring, for its sustenance and well-being when it shall have been born;–these are lucid and convincing proofs of an intelligent Creator, to which no ordinary mind can refuse its conviction. Nor is the evidence, which we here recognize, deprived of its force, when we see that many parts of the structure of animals, though adapted for particular purposes, are yet framed as a portion of a system which does not seem, in its general form, to have any bearing on such purposes.[1]

The beautiful contrivances which exist in the skeleton of man, and the contrivances, possessing the same kind of beauty, in the skeleton of a sparrow, do not appear to any reasonable person less beautiful, because the skeleton of a man, and of a sparrow, have an agreement, bone for bone, for which we see no reason, and which appears to us to answer no purpose. The way in which the human hand and arm are made capable of their infinite variety of use, by the play of the radius and ulna, the bones of the wrist and the fingers, is not the less admirable, because we can trace the representatives and rudiments of each of these bones, in cases where they answer no such ends;–in the foreleg of the pig, the ox, the horse, or the seal. The provision for feeding the young creature, which is made, with such bounteous liberality, and such opportune punctuality, by the b.r.e.a.s.t.s of the mother, has not any doubt thrown upon its reality, by the teats of male animals and the paps of man, which answer no such purpose. That in these cases there is manifested a wider plan, which does not show any reference to the needs of particular cases; as well as peculiar contrivances for the particular cases, does not disturb our impression of design in each case. Why should so large a portion of the animal kingdom, intended, as it seems, for such different fields of life and modes of living;–beasts, birds, fishes;–still have a skeleton of the same plan, and even of the same parts, bone for bone; though many of the parts, in special cases, appear to be altogether useless (namely, the vertebrate plan)? We cannot tell.

Our naturalists and comparative anatomists, it would seem, cannot point out any definite end, which is answered by making so many of animals on this one vertebrate plan. And since they cannot do this, and since we cannot tell why animals are so made, we must be content to say that we do not know; and therefore, to leave this feature in the structure of animals out of our argument for design. Hence we do not say that the making of beasts, birds, and fishes, on the same vertebrate plan, proves design in the Creator, in any way in which we can understand design. That plan is not of itself a proof of design; it is something in addition to the proofs of design; a general law of the animal creation, established, it may be, for some other reason. But this common plan being given, we can discern and admire, in every kind of animal, the manner in which the common plan is adapted to the particular purpose which the animal’s kind of life involves.[2] The general law is not all; there is also, in every instance, a special care for the species. The general law may seem, in many cases, to remove further from us the proof of providential care; by showing that the elements of the benevolent contrivance are not provided in the cases alone where they are needed, but in others also. But yet this seeming, this obscuration of the evidence of design, by interposing the form of general law, cannot last long. If the general law supplies the elements, still a special adaptation is needed to make the elements answer such a purpose; and what is this adaptation, but design? The radius and ulna, the carpal and metacarpal bones, are all in the general type of the vertebrate skeleton. But does this fact make it the less wonderful, that man’s arm and hand and fingers should be constructed so that he can make and use the spade, the plow, the loom, the pen, the pencil, the chisel, the lute, the telescope, the microscope, and all other instruments? Is it not, rather, very wonderful that the bones which are to be found rudimentally, in the leg-bone of a horse, or the hoof of an ox, should be capable of such a curious and fertile development and modification?

And is not such development and modification a work, and a proof, of design and intention in the Creator? And so in other cases. The teats of male animals, the nipples of man, may arise from this, that the general plan of the animal frame includes paps, as portions of it; and that the frame is so far moulded in the embryo, before the s.e.x of the offspring is determined. Be it so. Yet still this provision of paps in the animal form in general, has reference to offspring; and the development of that part of the frame, when the s.e.x is determined, is evidence of design, as clear as it is possible to conceive in the works of nature.

The general law is moulded to the special purpose, at the proper stage; and this play of general laws, and special contrivances, into each other’s provinces, though it may make the phenomena a little more complex, and modify our notion as to the mode of the Creator’s working, will not, in philosophical minds, disturb the conviction that there is design in the special adaptations: besides which, some other feature of the operation of the Creative Mind may be suggested by the prevalence of general laws in the Creation.

4. There is, however, one caution suggested by this view. Since, besides, and mixed with the examples of Design which the creation offers, there are also results of General Laws, in which we cannot trace the purpose and object of the law; we may fall into error, if we fasten upon something which is a result of such mere general laws, and imagine that we can discern its object and purpose. Thus, for instance, we might possibly persuade ourselves that we had discovered the use and purpose of the teats of male animals; or of the trace of separation into parts which the leg-bone of a horse offers; or of the false toes of a pig: all which are, as we have seen, the rudiments of a plan more general than is developed in the particular case. And if, when we had made such a fancied discovery, it were found that the uses and purposes which we had imagined to belong to these parts or features, were not really served by them; at first, perhaps, we might be somewhat disturbed, as having lost one of the evidences of the design of the Creator, all which are, precious to a reverent mind. But it is not likely that any disturbance of a reverent mind on such grounds as this, would continue long, or go far. We should soon come to recollect, how light and precarious, perhaps how arbitrary and ill-supported by our real knowledge, were the grounds on which we had a.s.signed such uses to such parts. We should turn back from them to the more solid and certain evidences, not shaken, nor likely to be shaken, by any change in prevalent zoological or anatomical doctrines, which those who love to contemplate such subjects habitually dwell upon; and, holding ourselves ready to entertain any speculations by which the bearing of those general Laws upon Natural Religion could be shown, in such a way as to convince our reason, we should rest in the confident and tranquil persuasion that no success or failure in such speculations could vitally affect our belief in a wise and benevolent Deity:–that though additional ill.u.s.trations of his attributes might be interesting and welcome, no change of our scientific point of view could make his being or action doubtful.

5. This is, it would seem, the manner in which a reasonable and reverent man would regard the proof of a Supreme Creator and Governor, which is derived from Design, as seen in the organic creation; and the mode in which such proof would be affected by changes in the knowledge which we may acquire of the general laws by which the organic creation is const.i.tuted and governed. And hence, if it should be found to be established by the researches of the most comprehensive and exact philosophy, that there are, in any province of the universe, resemblances, gradations, general laws, indications of the mode in which one form approaches to another, and seems to pa.s.s into and generate another, which tend to obliterate distinctions which at first appeared broad and conspicuous; still the argument, from the design which appears in the parts of which we most clearly see the purpose, would not lose its force. If, for instance, it should be made apparent, by geological investigations of the extinct fossil creation, that the animal forms which have inhabited the earth, have gradually approached to that type in which the human form is included, pa.s.sing from the rudest and most imperfect animal organizations, mollusks, or even organic monads, to vertebrate animals, to warm-blooded animals, to monkeys, and to men; still, the evidences of design in the anatomy of man are not less striking than they were, when no such gradation was thought of. And what is more to the purpose of our argument, the evidences of the peculiar nature and destination of man, as shown in other characters than his anatomy,–his moral and intellectual nature, his history and capacities,–stand where they stood before; nor is the vast chasm which separates man, as a being with such characters as these latter, from all other animals, at all filled up or bridged over.

6. The evidence of design in the inorganic world,–in the relation of earth, air, water, heat and light,–is, to most persons, less striking and impressive, than it is in the organic creation. But even among these mere physical elements of the world, when we consider them with reference to living things, we find many arrangements which, on a reflective view, excite our admiration, by the beneficial effect, and seemingly beneficent purpose. Our condition is furnished with the solid earth, on which we stand, and in which we find the materials of man’s handiworks; stone and metal, clay and sand;–with the atmosphere which we breathe, and which is the vehicle of oral intercourse between man and man;–with revolutions of the sun, by which are brought round the successions of day and night, through all their varying lengths, and of summer and winter;–with the clouds above us, which pour upon the earth their fertilizing showers. All this furniture of the earth, so marvellously adapting it for the abode of living creatures, and especially of man, may well be regarded as a collection of provisions for his benefit:–as _intended_ to do him the good, which they do. Nor would this impression be removed, or even weakened, if we were to discover that some of these arrangements, instead of being produced by a machinery confined to that single purpose, were only partial results of a more general plan. For instance; we learn that the varying lengths of days and nights through the year, and the varying declination of the sun, are produced, not, as was at first supposed, by the sun moving round the earth, in a complex diurnal and annual path, but by the earth revolving in an annual orbit round the sun; while at the same time she has a diurnal rotation about her own axis, which axis, by the laws of mechanics, remains always parallel to itself. When we learn that this is so, we see that the effect is produced by a mechanical arrangement far more simple than any which the imagination of man had devised; but in this case, the effect is plainly rather an increased admiration at the simplicity of the mechanism, than a wavering belief in the reality of the purpose. In like manner when, instead of supposing water to exist in a continuous reservoir in a firmament above the earth, and to fall in the earlier and in the latter rain, by some special agency for that purpose; men learnt to see that the water in the upper regions of the air must exist in clouds and in vapors only, and must fall in showers by the condensing influence of cold currents of air; they needed not to cease to admire the kindness of the Creator, in providing the rain to water the earth, and the wind to dry it; although the mechanism by which the effect was produced was of a larger kind than they had before imagined. And even if this mechanism extend through the solar system: if the arrangement by which the Earth’s atmosphere is the special region in which there are winds hot and cold, clouds compact or dissolving,–be an arrangement which extends its influence to other planets, as well as to ours;–if this mixed atmosphere be placed, not only at the meeting point of clear aqueous vapor above, and warmer airs below, but also at the meeting point of a hot central region surrounding the Sun, and a cold exterior zone in which water and vapor can exist in immense collected, such as are Jupiter and Saturn;–still it would not appear, to a reasonable view, that this larger expansion of the machinery by which the effect is produced, makes the machinery less remarkable; or can at all tend to diminish the belief that it was _intended_ to produce the effect which it does produce. Hot and cold, moist and dry, are constantly mixed together for the support of vegetable and animal life; and not the less so, if we believe that, though elements of this kind pervade the whole solar system, it is only at the Earth that they are combined so as to foster and nourish living things.

7. But it will perhaps be said, that to suppose the whole Solar System to be a machine merely operating for the benefit of the Earth and its population, is to give to the Earth and its population an importance in the scheme of creation which is quite extravagant and improbable:–it is to make the greater orbs, Jupiter and Saturn, minister to the less; instead of having their own purpose, and their own population, which their size naturally leads us to expect. To this we reply, that, in the first place, we have shown good reason for believing that the Earth is really the largest dense solid globe which exists in the solar system, and that the size of Jupiter and Saturn arises from their being composed mainly of water and vapor. And with regard to the difficulty of the greater ministering to the less;–if by _greater_, mere size and extent be understood, it appears to be the universal law of creation, that the greater, in that sense, _should_ minister to the less, when the less includes living things. Even if the planets be all inhabited, the sun, which is greater far than all of them together, ministers light and heat to all of them. Even on this supposition, the vast s.p.a.ces by which the planets are separated have no use, that we can discern, except to place them at suitable distances from the sun. Even on this supposition, their solid globes within, their atmospheres without are all merely subservient to the benefit of a thin and scattered population on the surface. The s.p.a.ce occupied by men and animals on the earth’s surface, even taking into account the highest buildings and the deepest seas, is only a few hundreds, or a thousand feet. The benefit of this minute sh.e.l.l, interrupted in many places for vast distances, everywhere loosely and spa.r.s.ely filled, is ministered to by the solidity and attraction of a ma.s.s below it 20 millions of feet deep; by the influence of an atmosphere above it 200 thousand feet high at least, and it may be, much more. And this being so, if we increase the depth of the centre 20 thousand times; if we carry the extreme verge of air and vapor to thirty times the radius of the earth’s…o…b..t from us, how does the construction of the machine become more improbable, or the disproportion of its size to its purpose more incongruous? Is mere size,–extent of brute matter or blank s.p.a.ce,–so majestic a thing? Is not infinite s.p.a.ce large enough to admit of machines of any size without grudging? But if we thus move the centre of the Earth’s peopled surface 20 thousand times further off, we reach the Sun. If we carry the limit of air and vapor to the distance of 30 times the radius of the Earth’s…o…b..t we arrive at Neptune. Are these new numbers monstrous, while the old ones were accepted without scruple? Is number such an alarming feature in the description of the Universe? Does not the description of every part and every aspect of it, present us with numbers so large, that wonder and repugnance, on that ground are long ago exhausted? Surely this is so: and if the evidence really tend to prove to us that all the solar system ministers to the earth’s population; the mere size of the system, compared with the s.p.a.ce occupied by the population, will not long stand in the way of the reception of such a doctrine.

8. But the objection will perhaps be urged in another form. It will be said that the other Planets have so many points of resemblance with the Earth, that we must suppose their nature and purpose the same. They, like the Earth, revolve in circles round the sun, rotate on their own axes, have, several of them, satellites, are opaque bodies, deriving light and probably heat from the sun. To an external spectator of the Solar System, they would not be distinguishable from the Earth. Such a spectator would never be tempted to guess that the Earth alone, of all these, neither the greatest nor the least, neither the one with the most satellites, nor the fewest, neither the innermost nor the outermost of the planets, is the only one inhabited; or at any rate the only one inhabited by an intelligent population. And to this we reply; that the largest of the other planets, if we judge rightly, are _not_ like the Earth in one most essential respect, their density; and none of them, in having a surface consisting of land and water; except perhaps Mars: that if the supposed external spectator could see that this was so, he might see that the earth was different from the rest; and he might be able to see the vaporous nature of the outer planets, so that he would no more think of peopling them, than we do, of peopling the grand Alpine ridges and vallies which we see in the clouds of a summer-sky.

9. But even if the supposed spectator attended only to the obvious and superficial resemblances between one of the planets and another, he might still, if he were acquainted with the general economy of the Universe, have great hesitation in inferring that, if one of them were inhabited, the others also must be inhabited. For, as we have said, in the plan of creation, we have a profusion of examples, where similar visible structures do not answer a similar purpose; where, so far as we can see, the structure answers no purpose in many cases; but exists, as we may say, for the sake of similarity: the similarity being a general Law, the result, it would seem, of a creative energy, which is wider in its operation than the particular purpose. Such examples are, as we have said, the finger-bones which are packed into the hoofs of a horse, or the paps and nipples of a male animal. Now the spectator, recollecting such cases might say: I know that the earth is inhabited; no doubt Mars and Jupiter are a good deal like the Earth; but are they inhabited? They look like the terrestrial breast of Nature: but are they really nursing b.r.e.a.s.t.s? Do they, like that, give food to living offspring? Or are they mere images of such b.r.e.a.s.t.s? male teats, dry of all nutritive power?

sports, or rather overworks of nature; marks of a wider law than the needs of Mother Earth require? many sketches of a design, of which only one was to be executed? many specimens of the preparatory process of making a Planet, of which only one was to be carried out into the making of a World? Such questions might naturally occur to a person acquainted with the course of creation in general; even before he remarked the features which tend to show that Jupiter and Saturn, that Venus and Mercury, have not been developed into peopled worlds, like our Earth.

10. Perhaps it may be said, that to hold this, is to make Nature work in vain; to waste her powers; to suppose her to produce the frame work, and not to build; to make the skeleton, and not to clothe it with living flesh; to delude us with appearances of a.n.a.logy and promises of fertility, which are fallacious. What can we reply to this?

11. We reply, that to work in vain, in the sense of producing means of life which are not used, embryos which are never vivified, germs which are not developed; is so far from being contrary to the usual proceedings of nature, that it is an operation which is constantly going on, in every part of nature. Of the vegetable seeds which are produced, what an infinitely small proportion ever grow into plants! Of animal ova, how exceedingly few become animals, in proportion to those that do not; and that are wasted, if this be waste! It is an old calculation, which used to be repeated as a wonderful thing, that a single female fish contains in its body 200 millions of ova, and thus, might, of itself alone, replenish the seas, if all these were fostered into life.

But in truth, this, though it may excite wonder, cannot excite wonder as anything uncommon. It is only one example of what occurs everywhere.

Every tree, every plant, produces innumerable flowers, the flowers innumerable seeds, which drop to the earth, or are carried abroad by the winds, and perish, without having their powers unfolded. When we see a field of thistles shed its downy seeds upon the wind, so that they roll away like a cloud, what a vast host of possible thistles are there! Yet very probably none of them become actual thistles. Few are able to take hold of the ground at all; and those that do, die for lack of congenial nutriment, or are crushed by external causes before they are grown. The like is the case with every tribe of plants.[3] The like with every tribe of animals. The possible fertility of some kinds of insects is as portentous as anything of this kind can be. If allowed to proceed unchecked, if the possible life were not perpetually extinguished, the multiplying energies perpetually frustrated, they would gain dominion over the largest animals, and occupy the earth. And the same is the case, in different degrees, in the larger animals. The female is stocked with innumerable ovules, capable of becoming living things: of which incomparably the greatest number end as they began, mere ovules;–marks of mere possibility, of vitality frustrated. The universe is so full of such rudiments of things, that they far outnumber the things which outgrow their rudiments. The marks of possibility are much more numerous than the tale of actuality. The vitality which is frustrated is far more copious than the vitality which is consummated. So far, then, as this a.n.a.logy goes, if the earth alone, of all the planetary harvest, has been a fertile seed of creation;–if the terrestrial embryo have alone been evolved into life, while all the other have remained barren and dead:–we have, in this, nothing which we need regard as an unprecedented waste, an improbable prodigality, an unusual failure in the operations of nature: but on the contrary, such a single case of success among many of failure, is exactly the order of nature in the production of life. It is quite agreeable to a.n.a.logy, that the Solar System, of which the _flowers_ are not many, should have borne but one _fertile_ flower. One in eight, or in twice eight, reared into such wondrous fertility as belongs to the Earth, is an abundant produce, compared with the result in the most fertile provinces of Nature. And even if any number of the Fixed Stars were also found to be barren flowers of the sky; objects, however beautiful, yet not sources of life or development, we need not think the powers of creation wasted or frustrated, thrown away or perverted. One such fertile result as the Earth, with all its hosts of plants and animals, and especially with Man, an intelligent being, to stand at the head of those hosts, is a worthy and sufficient produce, so far as we can judge of the Creator’s ways by a.n.a.logy, of all the Universal Scheme.

12. But when we follow this a.n.a.logy, so far as to speak of the mere material ma.s.s of a planet as an _embryo world_;–a barren flower;–a seed which has never been developed into a plant;–we are in danger of allowing the a.n.a.logy to mislead us. For a planet, as to its brute ma.s.s, has really nothing in common with a seed or an embryo. It has no organization, or tendency to organization; no principle of life, however obscure. So far as we can judge, no progress of time, or operation of mere natural influence, would clothe a brute ma.s.s with vegetables, or stock it with animals. No species of living thing would have its place upon the surface; by the mere order of unintelligent nature. So much is this so, according to all that our best knowledge teaches, that those geologists who must most have desired, for the sake of giving completeness and consistency to their systems, to make the production of vegetable and animal species from brute matter, a part of the order of nature, (inasmuch as they have explained everything else by the order of nature,) have not ventured to do so. They allow, generally at least, each separate species to require a special act of creative power, to bring it into being. They make the peopling of the earth, with its successive races of inhabitants, a series of events altogether different from the operation of physical laws in the sustentation of existing species. The creation of life is, they allow, something out of the range of the ordinary laws of nature. And therefore, when we speak of uninhabited planets, as cases in which vital tendencies have been defeated; in which their apparent destiny, as worlds of life, has been frustrated; we really do injustice to our argument. The planets had no vital tendencies: they could have had such given, only by an additional act, or a series of additional acts, of Creative power. As mere inert globes, they had no settled destiny to be seats of life: they could have such a destiny, only by the appointment of Him who creates living things, and puts them in the places which he chooses for them. If, when a planetary ma.s.s had come into being, (in virtue of the same general physical law, suppose, which produced the earth,) the Creator placed a host of living things upon the earth, and none upon the other planet; there was still no violation of a.n.a.logy, no seeming change of purpose, no unfinished plan. In the solar system, we can see what seem to be good reasons why he did this; but if we could not see such reasons, still we should be yet further from being able to see reasons why he necessarily must place inhabitants upon the other planet.

13. It is sometimes said, that it is agreeable to the goodness of G.o.d, that all parts of the creation should swarm with life; that life is enjoyment; and that the benevolence of the Supreme Being is shown in the diffusion of such enjoyment into every quarter of the universe. To leave a planet without inhabitants, would, it is thought, be to throw away an opportunity of producing happiness. Now we shall not here dwell upon the consideration, that the enjoyment thus spoken of, is, in a great degree, the enjoyment which the mere life of the lower tribes of animals implies;–the enjoyment of madrepores and oysters, cuttle-fish and sharks, tortoises and serpents; but we reply more broadly, that it is not the rule followed by the Creator, to fill all places with living things. To say nothing of the vast intervals between planet and planet, which, it is presumed, no one supposes to be occupied by living things; how large a portion of the surface of the earth is uninhabited, or inhabited only in the scantiest manner. Vast desert tracts exist in Africa and in Asia, where the barren sand nourishes neither animal nor vegetable life. The highest regions of mountain-ranges, clothed with perpetual snow, and with far-reaching sheets of glacier ice, are untenanted, except by the chamois at their outskirts. There are many uninhabited islands; and were formerly many more. The ocean, covering nearly three-fourths of the globe, is no seat of habitation for land animals or for man; and though it has a large population of the fishy tribes, is probably peopled in smaller numbers than if it were land, as well as by inferior orders. We see, in the Earth then, which is the only seat of life of which we really know anything, nothing to support the belief that every field in the material universe is tenanted by living inhabitants.

14. That vegetables and animals, being once placed upon the earth, have multiplied or are multiplying, so as to occupy every part of the land and water which is suited for their habitation, we can see much reason to believe. Philosophical natural-historians have been generally led to the conviction that each species has had an original centre of dispersion, where it was first native, and that from this centre it has been diffused in all directions, as far as the circ.u.mstances of climate and soil were favorable to its production. But we can see also much reason to believe that this general diffusion of vegetable and animal life from centres, is a part of the order of nature which may often be made to give way to other and higher purposes;–to the diffusion, over the whole surface of the earth, of a race of intelligent, moral agents.

This process may often interfere with the general law of diffusion: as for instance, when man exterminates noxious animals. And whatever may be the laws which tend to replenish the earth, on which such centres of the diffusion of life exist for animals and plants; according to all a.n.a.logy, these laws can have no force on any other planet, till such origins and centres of life are established on their surfaces. And even if any of the species which have ever tenanted the earth were so established on any other planet, we have the strongest reason to believe that they could not survive to a second generation.

15. Perhaps it may be said that we unjustifiably limit the power and skill of the Supreme Creator, if we deny that he could frame creatures fitted to live on any of the other planets, as well as in the Earth:–that the wonderful variety, and unexpected resource, of the ways in which animals are adapted for all kinds of climates, habitations, and conditions, upon the earth, may give us confidence that, under conditions still more extended, in habitations still further removed, in climates going beyond the terrestrial extremes, still the same wisdom and skill may well be supposed to have devised possible modes of animal life.

16. To this we reply, that we are so far from saying that the Creator could not place inhabitants in the other planets, that we have attempted to show what kind of inhabitants would be most likely to be placed there, by considering the way in which animals are accommodated to special conditions in their habitation. In judging of such modes of accommodating animals to an abode on other planets, as well as the earth, we have reasoned from what we know, of the mode in which animals are accommodated to their different habitations on the earth. We believe this to be the only safe and philosophical way of treating the question.

If we are to reason at all about the possibility of animal life, we must suppose that heat and light, gravity and buoyancy, materials and affinities, air and moisture, produce the same effect, require the same adaptations, in Jupiter or in Venus, as they do on the Earth. If we do not suppose this, we run into the error which so long prevented many from accepting the Newtonian system:–the error of thinking that matter in the heavens is governed by quite different laws from matter on the earth. We must adopt that belief, if we hold that animals may live under relations of heat and moisture, materials and affinities, in Jupiter or Venus, under which they could not live on our planet. And that belief, as we have said, appears to us contrary to all the teaching which the history of science offers us.

17. And not only is it contrary to the teaching of the history of science, to suppose the laws, which connect elemental and organic nature, to be different in the other planets from what they are on ours; but moreover the supposition would not at all answer the purpose, of making it probable that the planets are inhabited. For if we begin to imagine new and unknown laws of nature for those abodes, what is there to limit or determine our a.s.sumptions in any degree? What extravagant mixtures of the attributes and properties of mind and matter may we not then accept as probable truths? We know how difficult the poets have found it to describe, with any degree of consistency, the actions and events of a world of angels, or of evil spirits, souls or shades, embodied in forms so as to admit of description, and yet not subject to the laws of human bodies. Virgil,, Milton, Klopstock, and many others, have struggled with this difficulty:–no one of them, it will be probably agreed, with any great success; at least, regarding his representation as a hypothesis of a possible form of life, different from all the forms which we know. Yet if we are to reject the laws which govern the known forms of life, in order that we may be able to maintain the possibility of some unknown form in a different planet, we must accept some of these hypotheses, or find a better. We must suppose that weight and cohesion, wounds and mutilations, wings and plumage, would have, either the effect which the poets represent them as having, or some different effect: and in either case it will be impossible to give any sufficient reason why we should confine the population to the surface of a planet. If gravity have not, upon any set of beings, the effect which it has upon us, such beings may live upon the surface of Saturn, though it be mere vapor: but then, on that supposition, they may equally well live in the vast s.p.a.ce between Saturn and Jupiter, without needing any planet for their mansion. If we are ready to suppose that there are, in the solar system, conscious beings, not subject to the ordinary laws of life, we may go on to imagine creatures const.i.tuted of vaporous elements, floating in the fiery haze of a nebula, or close to the body of a sun; and cloudy forms which soar as vapors in the region of vapor. But such imaginations, besides being rather fitted for the employment of poets than of philosophers, will not, as we have said, find a population for the planets; since such forms may just as easily be conceived swimming round the sun in empty s.p.a.ce, or darting from star to star, as confining themselves to the neighborhood of any of the solid globes which revolve about the central sun.

18. We should not, then add anything to the probability of inhabitants on the other planets of our system, even if we were arbitrarily to a.s.sume unlimited changes in the laws of nature, when we pa.s.s from our region to theirs. But probably, all readers will be of opinion that such a.s.sumptions are contrary to the whole scheme and spirit of such speculations as we are here presuming:–that if we speculate on such subjects at all, it must be done by supposing that the same laws of nature operate in the same manner, in planetary, as in terrestrial s.p.a.ces;–and that as we suppose, and prove, gravity and attraction, inertia and momentum, to follow the same rules, and produce the same effects, on brute matter there, which they do here; so, both these forces, and others, as light and heat, moisture and air, if, in the planets, they go beyond the extremes which limit them here, yet must imply, in any organized beings which exist in the planets, changes, though greater in amount, of the same kind as those which occur in approaching the terrestrial extremes of those elementary agents. And what kind of a population that would lead us to suppose in Jupiter or Saturn, Mars or Venus, the reader has already seen our attempt to determine; and may thence judge whether, when we go so far beyond the terrestrial extremes of heat and cold, light and dimness, vapor and water, air and airlessness, any population at all is probable.

19. Perhaps some persons, even if they cannot resist the force of these reasons, may still yield to them with regret; and may feel as if, having hitherto believed that the planets were inhabited, and having now to give up that belief, their view of the solar system, as one of the provinces of G.o.d’s creation, were made narrower and poorer than it was before. And this feeling may be still further increased, if they are led to believe also that many of the fixed stars are not the centres of inhabited systems; or that very few, or none are. It may seem to them, as if, by such a change of belief, the field of G.o.d’s greatness, benevolence, and government, were narrowed and impoverished, to an extent painful and shocking;–as if, instead of being the Maker and Governor of innumerable worlds, of the most varied const.i.tution, we were called upon to regard him as merely the Master of the single world in which we live:–as if, instead of being the object of reverence and adoration to the intelligent population of these thousand spheres, he was recognized and worshipped on one only, and on that, how scantily and imperfectly!

20. It is not to be denied that there may be such a regret and disturbance naturally felt at having to give up our belief that the planets and the stars probably contain servants and worshippers of G.o.d.

It must always be a matter of pain and trouble, to be urged with tenderness, and to be performed in time, to untwine our reverential religious sentiments from erroneous views of the const.i.tution of the universe with which they have been involved. But the change once made, it is found that religion is uninjured, and reverence undiminished. And therefore we trust that the reader will receive with candor and patience the argument which we have to offer with reference to this view, or rather, this sentiment.

21. We remark, in the first place, that however repugnant it may be to us to believe a state of any part of the universe in which there are not creatures who can know, obey and worship G.o.d; we are compelled, by geological evidence, to admit that such a state of things has existed upon the earth, during a far longer period than the whole duration of man’s race. If we suppose that the human race, if not by their actual knowledge, obedience, and worship of G.o.d, yet at least by their faculties for knowing, obeying, and worshipping, are a sufficient reason why there should be such a province in G.o.d’s empire; still in fact, this race has existed only for a few thousand years, out of the, perhaps, millions of years of the earth’s existence; and during all the previous period, the earth, if tenanted, was tenanted by brute creatures, fishes and lizards, beasts and birds, of which none had any faculty, intellectual, moral, or religious. By the same a.n.a.logy, therefore, on which we have already insisted, we may argue that there is reason to believe, that if other planets, and other stars, are the seats of habitation, it is rather of such habitation as has prevailed upon the earth during the millions, than during the six thousand years; and that if we have, in consequence of physical reasons, to give up the belief of a population in the other planets, or in the stars; we are giving up, not anything with which we might dwell with religious pleasure–hosts of fellow-servants and fellow-worshippers of the Divine Author of all:–but the mere brute tribes, of the land and of the water, things that creep and crawl, prowl and spring;–none that can lift its visage to the sky, with a feeling that it is looking for its Maker and Master. There have not existed upon the Earth, during the immense ages of its praehuman existence, beings who could recognize and think of the Creator of the world: and if astronomy introduces us, as geology has done, to a new order of material structures, thus barren of an intelligent and religious population, we must learn to accept the prospect, in the one case, as in the other. Nor need we fear that on a further contemplation of the universe, we shall find every part of it ministering, though perhaps not in the way our first thoughts had guessed, to sentiments of reverence and adoration towards the Maker of the universe.

22. The truth is, as the slightest recollection of the course of opinion about the stars may satisfy us, that men have had repeatedly to give up the notions which they had adopted, of the manner in which the material heavens, the stars and the skies, are to minister to man’s feeling of reverence for the Creator. It was long ago said, that the heavens declare the glory of G.o.d, and the firmament showeth his handiwork: that day and night, sun and moon, clouds and stars, unite in impressing upon us this sentiment. And this language still finds a sympathetic echo, in the b.r.e.a.s.t.s of all religious persons. Nor will it ever cease to do so, however our opinions of the structure and nature of the heavenly bodies may alter. When the new aspects of things become familiar, they will show us the handiwork of G.o.d, and declare his glory, as plainly as the old ones. But in the progress of opinions, man has often had to resign what seemed to him, at the time, visions so beautiful, sublime, and glorious, that they could not be dismissed without regret. The Universal Lord was at one time conceived as directing the motions of all the spheres by means of Ruling Angels, appointed to preside over each. The prevalence of proportion and number, in the dimensions of these spheres, was a.s.sumed to point to the existence of harmonious sounds, accompanying their movements, though unheard by man; as proportion and number had been found to be the accompaniments and conditions of harmony upon earth. The time came, when these opinions were no longer consistent with man’s knowledge of the heavenly motions, and of the wide-spreading causes by which they are produced. Then “Ruling Angels from their spheres were hurled,” as a matter of belief; though still the poets loved to refer to imagery in which so many lofty and reverent thoughts had so long been clothed. The aspect of the stars was most naturally turned to a lesson of cheerful and thoughtful piety, by the adoption of such a view of their nature and office; and thus, the midnight contemplator of an Italian sky teaches his companion concerning the starry host;

Sit, Jessica; look how the floor of heav’n Is thick inlaid with patterns of bright gold.

There’s not the meanest orb, which thou behold’st, But in his motion like an angel sings, Still quiring to the young-eyed cherubims; Such harmony is in immortal souls.

meaning, apparently, the harmony between the immortal spirits that govern each star, and the cherubims that sing before the throne of G.o.d.

But however beautiful and sublime may be this representation, the philosopher has had to abandon it in its literal sense. He may have adopted, instead, the opinion that each of the stars is the seat, or the centre of a group of seats, of choirs of worshippers; but this again, is still to suppose the nature of those orbs to be entirely different from that of this earth; though in many respects, we know that they are governed by the same laws. And if he will be content to know no more than he has the means of knowing, or even to know only according to his best means of knowing, he must be prepared, if the force of proof so requires, to give up this belief also; at least for the present.

23. Indeed, those who have not been content with this, and have sought to combine with the visible splendor of the skies, some scheme, founded upon astronomical views, which shall people them with intelligent beings and worshippers, have drawn upon their fancy quite as much as Lorenzo in his lesson to Jessica; or rather, they have done what he and those from whom his love was derived, had done before. They have taken the truths which astronomers have discovered and taught, and made the objects and regions so revealed, the scenes and occasions of such sentiments of piety as they themselves have, or feel that they ought to have. Even in Shakspeare, the stars are already _orbs_, each orb has his _motion_, and in his motion produces the music of the spheres. More recent preachers, following sounder views of the nature of these orbs and motions, have been equally poetical when they come to their religious reflection. When the poet of the _Night Thoughts_ says,

“Each of these stars is a religious house; I saw their altars smoke, their incense rise, And heard hosannas ring through every sphere.”

he is no less imaginative than the poet of that _Midsummer Night’s Dream_, which we have in the _Merchant of Venice_. And we are compelled, by all the evidence which we can discern, to say the same of the preacher who speaks, from the pulpit, of these orbs of worlds, and tells us of the stars which “give animation to other systems[4];” when he says[5] “worlds roll in these distant regions; and these worlds must be the centres of life and intelligence;” when he speaks of the earth[6] as “the humblest of the provinces of G.o.d’s empire.” But then we must recollect that these thoughts still prove the religious nature of man; they show how he is impelled to endeavor to elevate his mind to G.o.d by every part of the universe; and it is not too much to say, that through the faculties of man, thus regarding the starry heavens, every star does really testify to the greatness of G.o.d, and minister to His worship.

24. We may trust that this mere material magnificence does not require inhabitants, to make it lift man’s heart towards the Universal Creator, and to make him accept it as a sublime evidence of His greatness. The grandest objects in nature are blank and void of life;–the mountain-peaks that stand, ridge beyond ridge, serene in the region of perpetual snow;–the summer-clouds, images of such mountain tracts, even upon a grander scale, and tinted with more gorgeous colors;–the thunder-cloud with its dazzling bolt;–the stormy ocean with its mountainous waves;–the Aurora Borealis, with its mysterious pillars of fire;–all these are sublime; all these elevate the soul, and make it acknowledge a mighty Worker in the elements, in spite of any teaching of a material philosophy. And if we have to regard the planets as merely parts of the same great spectacle of nature, we shall not the less regard them with an admiration which ministers to pious awe. Even merely as a spectacle, Saturn made visible in his real shape, only by a vast exertion of human skill, yet shining like a star, in form so curiously complex, symmetrical and seemingly artificial, will never cease to be an object of the ardent and contemplative gaze of all who catch a sight of him. And however much the philosopher may teach that he is merely a ma.s.s of water and vapor, ice and snow, he must be far more interesting to the eye than the Alps, or the clouds that crown them, or the ocean with its icebergs; where the same elements occur in forms comparatively shapeless and lawless, irregular and chaotic.

25. But perhaps there is in the minds of many persons, a sentiment connected with this regular and symmetrical form of the heavenly bodies; that being thus beautifully formed and finished they must have been the objects of especial care to the Creator. These regular globes, these nearly circular orbits, these families of satellites, they too so regular in their movements; this ring of Saturn; all the adjustments by which the planetary motions are secured from going wrong, as the profoundest researches into the mechanics of the universe show;–all these things seem to indicate a peculiar attention bestowed by the Maker on each part of the machine. So much of law and order, of symmetry and beauty in every part, implies, it may be thought, that every part has been framed with a view to some use;–that its symmetry and its beauty are the marks of some n.o.ble purpose.

26. To reply to this argument, so far as it is requisite for us to do so, we must recur to what we have already said; that though we see in many parts of the universe, inorganic as well as organic, marks which we cannot mistake, of design and purpose; yet that this design and purpose are often effected by laws which are of a much wider sweep than the design, so far as we can trace its bearing. These laws, besides answering the purpose, produce many other effects, in which we can see no purpose. We have now to observe further that these laws, thus ranging widely through the universe, and working everywhere, as if the Creator delighted in the generality of the law, independently of its special application, do often produce innumerable results of beauty and symmetry, as if the Creator delighted in beauty and symmetry, independently of the purpose answered.

27. Thus, to exemplify this reflection: the powers of aggregation and cohesion, which hold together the parts of solid bodies, as metals and stones, salts and ice,–which solidify matter, in short,–we can easily see, to be necessary, in order to the formation and preservation of solid terrestrial bodies. They are requisite, in order that man may have the firm earth to stand upon, and firm materials to use. But let us observe, what a wonderful and beautiful variety of phenomena grows out of this law, with no apparent bearing upon that which seems to us its main purpose. The power of aggregation of solid bodies is, in fact, the force of crystallization. It binds together the particles of bodies by molecular forces, which not only hold the particles together, but are exerted in special directions, which form triangles, squares, hexagons, and the like. And hence we have all the variety of crystalline forms which sparkle in gems, ores, earths, pyrites, blendes; and which, when examined by the crystallographers, are found to be an inexhaustible field of the play of symmetrical complexity. The diamond, the emerald, the topaz, have got each its peculiar kind of symmetry. Gold and other metals have, for the basis of their forms, the cube, but run from this into a vastly greater variety of regular solids than ever geometer dreamt of. Some single species of minerals, as calc-spar, present hundreds of forms, all rigorously regular, and have been alone the subject of volumes. Ice crystallizes by the same laws as other solid bodies; and our Arctic voyagers have sometimes relieved the weariness of their sojourn in those regions, by collecting some of the innumerable forms, resembling an endless collection of hexagonal flowers, sporting into different shapes, which are a.s.sumed by flakes of snow[7]. In these and many other ways, the power of crystallization produces an inexhaustible supply of examples of symmetrical beauty. And what are we to conceive to be the object and purpose of this? As we have said, that part of the purpose which is intelligible to us is, that we have here a force holding together the particles of bodies, so as to make them solid. But all these pretty shapes add nothing to this intelligible use.

Why then are they there? They are there, it would seem, for their own sake;–because they are pretty;–symmetry and beauty are there on their own account; or because they are universal adjuncts of the general laws by which the creator works. Or rather we may say, combining different branches of our knowledge, that crystallization is the mark and accompaniment of chemical composition: and that as chemical composition takes place according to definite numbers, so crystalline aggregation takes place according to definite forms. The symmetrical relations of s.p.a.ce in crystals correspond to the simple relations of number in synthesis; and thus, because there is rule, there is regularity, and regularity a.s.sumes the form of beauty.

28. This, which thus shows itself throughout the mineral kingdom, or, speaking more widely and truly, throughout the whole range of chemical composition, is still more manifest in the vegetable domain. All the vast array of flowers, so infinitely various, and so beautiful in their variety, are the results of a few general laws; and show, in the degree of their symmetry, the alternate operation of one law and another. The rose, the lily, the cowslip, the violet, differ in something of the same way, in which the crystalline forms of the several gems differ. Their parts are arranged in fives or in threes, in pentagons or in hexagons, and in these regular forms, one part or another is expanded or contracted, rendered conspicuous by color or by shape, so as to produce all the multiplicity of beauty which the florist admires. Or rather, in the eye of the philosophical botanist, the whole of the structure of plants, with all their array of stems and leaves, blossoms and fruits, is but the manifestation of one Law; and all these members of the vegetable form, are, in their natures, the same, developed more or less in this way or in that. The daisy consists of a close cl.u.s.ter of flowers of which each has, in its form, the rudiments of the valerian. The peablossom is a rose, with some of its petals expanded into b.u.t.terfly-like wings. Even without changing the species, this general law leads to endless changes. The garden-rose is the common hedge-rose with innumerable filaments changed into glowing petals. By the addition of whorl to whorl, of vegetable coronet over coronet, green and colored, broad and narrow, filmy and rigid, every plant is generated, and the glory of the field and of the garden, of the jungle and of the forest, is brought forth in all its magnificence. Here, then, we have an immeasurable wealth of beauty and regularity, brought to view by the operation of a single law. And to what use? What purpose do these beauties answer? What is the object for which the lilies of the field are clothed so gaily and gorgeously? Some plants, indeed, are subservient to the use of animals and of man: but how small is the number in which we can trace this, as an intelligent purpose of their existence! And does it not, in fact, better express the impression which the survey of this province of nature suggests to us, to say, that they grow because the Creator willed that they should grow? Their vegetable life was an object of His care and contrivance, as well as animal and human life. And they are beautiful, also because He willed that they should be so:–because He delights in producing beauty;–and, as we have further tried to make it appear, because He acts by general law, and law produces beauty. Is not such a tendency here apparent, as a part of the general scheme of Creation?

29. We have already attempted to show, that in the structure of animals, especially that large cla.s.s best known to us, vertebrate animals, there is also a general plan which, so far as we can see, goes beyond the circuit of the special adaptation of each animal to its mode of living: and is a rule of creative action, in addition to the rule that the parts shall be subservient to an intelligible purpose of animal life. We have noticed several phenomena in the animal kingdom, where parts and features appear, rudimentary and inert, discharging no office in their economy, and speaking to us, not of purpose, but of law:–consistent with an end which is visible, but seemingly the results of a rule whose end is in itself.

30. And do we not, in innumerable cases, see beauties of color and form, texture and l.u.s.tre, which suggests to us irresistibly the belief that beauty and regular form are rules of the Creative agency, even when they seem to us, looking at the creation for uses only, idle and wanton expenditure of beauty and regularity. To what purpose are the host of splendid circles which decorate the tail of the peac.o.c.k, more beautiful, each of them, than Saturn with his rings? To what purpose the exquisite textures of microscopic objects, more curiously regular than anything which the telescope discloses? To what purpose the gorgeous colors of tropical birds and insects, that live and die where human eye never approaches to admire them? To what purpose the thousands of species of b.u.t.terflies with the gay and varied embroidery of their microscopic plumage, of which one in millions, if seen at all, only draws the admiration of the wandering schoolboy? To what purpose the delicate and brilliant markings of, which live, generation after generation, in the sunless and sightless depths of the ocean? Do not all these examples, to which we might add countless others, (for the world, so far as human eye has scanned it, is full of them,) prove that beauty and regularity are universal features of the work of Creation, in all its parts, small and great: and that we judge in a way contrary to a vast range of a.n.a.logy, which runs through the whole of the Universe, when we infer that, because the objects which are presented to our contemplation are beautiful in aspect and regular in form, they must, in each case, be means for some special end, of those which we commonly fix upon, as the main ends of the Creation, the support and advantage of animals or of man?

31. If this be so, then the beautiful and regular objects which the telescope reveals to us; Jupiter and his Moons, Saturn and his Rings, the most regular of the Double Stars, Cl.u.s.ters and Nebulae; cannot reasonably be inferred, because they are beautiful and regular, to be also fields of life, or scenes of thought. They may be, as to the poet’s eye they often appear, the gems of the robe of Night, the flowers of the celestial fields. Like gems and like flowers, they are beautiful and regular, because they are brought into being by vast and general laws.

These laws, although, in the mind of the Creator, they have their sufficient reason, as far as they extend, may have, in no other region than that which we inhabit, the reason which we seek to discover everywhere, the sustentation of a life like ours. That we should connect with the existence of such laws, the existence of Mind like our own mind, is most natural; and, as we might easily show, is justifiable, reasonable, even necessary. But that we should suppose the result of such laws are so connected with Mind, that wherever the laws gather matter into globes, and whirl it round the central body, _there_ is also a local seat of minds like ours; is an a.s.sumption altogether unwarranted; and is, without strong evidence, of which we have as yet no particle, quite visionary.

32. But finally, it may be said that by this our view of the universe, we diminish the greatness of the work of creation, and the majesty of the Creator. Such a view appears to represent the other planets as mere fragments, which have flown off in the fabrication of this our earth, and of the mechanism by which it answers its purpose. Instead of a vast array of completed worlds, we have one world, surrounded by abortive worlds and inert Instead of perfection everywhere, we have imperfection everywhere, except at one spot; if even there the workmanship be perfect.

33. To this, the reply is contained in what we have already said: but we may add, that it cannot be wise or right, to prop up our notions of G.o.d’s greatness, by physical doctrines which will not bear discussion.

The Plurality of Worlds Part 8

If you are looking for The Plurality of Worlds Part 8 you are coming to the right place.
The Plurality of Worlds is a Webnovel created by Edward Hitchcock and William Whewell.
This lightnovel is currently completed.

[3] Bessel has discussed and refuted (it was hardly necessary) the conjecture of some persons (he describes them as “the feeling hearts who would find sympathy even in the Moon”) that there may be in the Moon’s valleys air enough to support life, though it does not rise above the hills.–_Populare Vorlesungen_, p. 78.

[4] The doctrine that the interior nucleus of the Earth is fluid, whether accepted or rejected, does not materially affect this argument.

It appears, that in some cases, at least, the melting of substances is prevented, by their being subjected to extreme pressure; but the density, the element from which we reason, is measured by methods quite independent of such questions.

[5] Herschel, 512. Bessel, however, holds that the oblateness of Jupiter proves that his interior is somewhat denser than his exterior. _Pop.

Vorles._ p. 91.

[6] Herschel, 513.

[7] A difficulty may be raised, founded on what we may suppose to be the fact, as to the extreme cold of those regions of the Solar System. It may be supposed that water under such a temperature could exist in no other form than ice. And that the cold must there be intense, according to our notion, there is strong reason to believe. Even in the outer regions of our atmosphere, the cold is probably very many degrees below freezing, and in the blank and airless void beyond, it may be colder still. It has been calculated by physical philosophers, on grounds which seem to be solid, that the cold of the s.p.a.ce beyond our atmosphere is 100 below zero. The s.p.a.ce near to Jupiter, if an absolute vacuum, in which there is no matter to receive and retain heat emitted from the Sun, may, perhaps, be no colder than it is nearer the Sun. And as to the effect the great cold would produce on Jupiter’s watery material, we may remark, that if there be a free surface, there will be vapor produced by the Sun’s heat; and if there be air, there will be clouds. We may add, that so far as we have reason to believe, below the freezing point, no accession of cold produces any material change in ice. Even in the expeditions of our Arctic navigators, a cold of 40 below zero was experienced, and ice was still but ice, and there were vapors and clouds as in our climate. It is quite an arbitrary a.s.sumption, to suppose that any cold which may exist in Jupiter would prevent the state of things which we suppose.

[8] Herschel, 508.

[9] It may be thought fanciful to suppose that because there is little or no solid matter (of any kind known to us) in Jupiter, his animals are not likely to have solid skeletons. The a.n.a.logy is not very strong; but also, the weight a.s.signed to it in the argument is small. _Valeat quantum valere debet._

[10] Herschel, 522.

[11] Herschel, 510.

[12] According to Bessel, Schroeter _once_ saw one bright point on the dark ground, near the boundary of light in Venus. This was taken as proving a mountain, estimated at 60,000 feet high. _Pop. Vorles._ p. 86.

[13] Herschel, 509.



1. We have given our views respecting the various planets which const.i.tute the Solar System;–views established, it would seem, by all that we know, of the laws of heat and moisture, density and attraction, organization and life. We have examined and reasoned upon the cases of the different planets separately. But it may serve to confirm this view, and to establish it in the reader’s mind, if we give a description of the system which shall combine and connect the views which we have presented, of the const.i.tution and peculiarities, as to physical circ.u.mstances, of each of the planets. It will help us in our speculations, if we can regard the planets not only as a collection, but as a scheme;–if we can give, not an enumeration only, but a theory. Now such a scheme, such a theory, appears to offer itself to us.

2. The planets exterior to Mars, Jupiter, and Saturn especially, as the best known of them, appear, by the best judgment which we can form, to be spheres of water, and of aqueous vapor, combined, it may be, with atmospheric air, in which their cloudy belts float over their deep oceans. Mars seems to have some portion at least of aqueous atmosphere; the earth, we know, has a considerable atmosphere of air, and of vapor; but the Moon, so near to her mistress, has none. On Venus and Mercury, we see nothing of a gaseous or aqueous atmosphere; and they, and Mars, do not differ much in their density from the Earth. Now, does not this look as if the water and the vapor, which belong to the solar system, were driven off into the outer regions of its vast circuit; while the solid which are nearest to the focus of heat, are all approximately of the same nature? And if this be so, what is the peculiar physical condition which we are led to ascribe to the Earth?

Plainly this: that she is situated just in that region of the system, where the existence of matter, both in a solid, a fluid, and a gaseous condition, is possible. Outside the Earth’s…o…b..t, or at least outside Mars and the small Planetoids, there is, in the planets, apparently, no solid matter; or rather, if there be, there is a vast preponderance of watery and vaporous matter. Inside the Earth’s…o…b..t, we see, in the planets, no traces of water or vapor, or gas; but solid matter, about the density of terrestrial matter. The Earth, alone, is placed at the border where the conditions of life are combined; ground to stand upon; air to breathe; water to nourish vegetables, and thus, animals; and solid matter to supply the materials for their more solid parts; and with this, a due supply of light and heat, a due energy of the force of weight. All these conditions are, in our conception, requisite for life: that all these conditions meet, elsewhere than in the neighborhood of the Earth’s…o…b..t, we see strong reasons to disbelieve. The Earth, then, it would seem, is the abode of life, not because all the globes which revolve round the Sun may be a.s.sumed to be the abodes of life; but because the Earth is fitted to be so, by a curious and complex combination of properties and relations, which do not at all apply to the others. That the Earth is inhabited, is not a reason for believing that the other Planets are so, but for believing that they are not so.

3. Can we see any physical reason, for the fact which appears to us so probable, that all the water and vapor of the system is gathered in its outward parts? It would seem that we can. Water and aqueous vapor are driven from the Sun to the outer parts of the solar system, or are allowed to be permanent there only, as they are driven off and retained at a distance by any other source of heat;–to use a homely ill.u.s.tration, as they are driven from wet objects placed near the kitchen-fire: as they are driven from the hot sands of Egypt into the upper air: as they are driven from the tropics to the poles. In this latter case, and generally, in all cases, in which vapor is thus driven from a hotter region, when it comes into a colder, it may again be condensed in water, and fall in rain. So the cold of the air in the temperate zone condenses the aqueous vapors which flow from the tropics; and so, we have our clouds and our showers. And as there is this rainy region, indistinctly defined, between the torrid and the frigid zones on the earth; so is there a region of clouds and rain, of air and water, much more precisely defined, in the solar system, between the central torrid zone and the external frigid zone which surrounds the Sun at a greater distance.

4. _The Earth’s…o…b..t is the Temperate Zone of the Solar System._ In that Zone only is the play of Hot and Cold, of Moist and Dry, possible.

The Torrid Zone of the Earth is not free from moisture; it has its rains, for it has its upper colder atmosphere. But how much hotter are Venus and Mercury than the Torrid Zone? There, no vapors can linger; they are expelled by the fierce solar energy; and there is no cool stratum to catch them and return them. If they were there, they must fly to the outer regions; to the cold abodes of Jupiter and Saturn, if on their way, the Earth did not with cold and airy finger outstretched afar, catch a few drops of their treasures, for the use of plant, and beast, and man. The solid stone only, and the metallic ore which can be fused and solidified with little loss of substance, can bear the continual force of the near solar fire, and be the material of permanent solid planets in that region. But the lava pavement of the Inner Planets bears no superstructure of life; for all life would be scorched away along with water, its first element. On the Earth first, can this superstructure be raised; and there, through we know not what graduation of forms, the waters were made to bring forth abundantly things that had life; plants, and animals nourished by plants, and conspiring with them, to feed on their respective appointed elements, in the air which surrounded them. And so, nourished by the influences of air and water, plants and animals lived and died, and were entombed in the scourings of the land, which the descending streams carried to the bottom of the waters. And then, these beds of dead generations were raised into mountain ranges; perhaps by the yet unextinguished forces of subterraneous fires. And then a new creation of plants and animals succeeded; still living under the fostering influence of the united pair, Air and Water, which never ceased to brood over the World of Life, their Nurseling; and then, perhaps, a new change of the limits of land and water, and a new creation again: till at last, Man was placed upon the Earth; with far higher powers, and far different purposes, from any of the preceding tribes of creatures: and with this, for one of his offices;–that there might be an intelligent being to learn how wonderfully the scheme of creation had been carried on, and to admire, and to worship the Creator.

5. But we have a few more remarks to make on the structure of the Solar System, in this point of view. When we say that the water and vapor of the System were driven to the outer parts, or retained there, by the central heat of the Sun, perhaps it might be supposed to be most simple and natural, that the aqueous vapor, and the water, should a.s.sume its place in a distinct circle, or rather a spherical sh.e.l.l, of which the Sun was the centre; thus making an elemental sphere about the centre, such as the ancients imagined in their schemes of the Universe. Nor will we venture to say that such an arrangement of elements might not be; though perhaps it might be shown that no stable equilibrium of the system would be, in this way, mechanically possible. But this at least we may say; that a rotatory motion of all the parts of the universe appears to be a universal law prevalent in it, so far as our observation can reach: and that, by such rotation of the separate, the whole is put in a condition which is everywhere one of stable equilibrium. It was, then, agreeable to the general scheme, that the excess of water and vapor, which must necessarily be carried away, or stored up, in the outer regions of the System, should be put into shapes in which it should have a permanent place and form. And thus, it is suitable to the general economy of creation, that this water and vapor should be packed into rotating, such as are Jupiter and Saturn, Ura.n.u.s and Neptune. When once collected in such rotating, the attraction of its parts would gather it into spheroidal forms; oblate by the effect of rotation, as Jupiter, or perhaps into annular forms, like the Ring of Saturn;[1] for such also is a mechanically possible form of equilibrium, for a fluid ma.s.s. And these spheroids once formed, the water would form a central nucleus, over which would hang a cover of vapor, raised by the evaporating power of the Sun, and forming clouds, where the rarity of the upper strata of vapor allowed the cold of the external s.p.a.ce to act; and these clouds, spun into belts by the rotation of the sphere.

And thus, the vapor, which would otherwise have wandered loose about the atmosphere, was neatly wound into b.a.l.l.s; which, again, were kept in their due place, by being made to revolve in nearly circular orbits about the Sun.

6. And thus, according to our view, water and gases, clouds and vapors, form mainly the planets in the outer part of the solar system; while such as result from the fusion of the most solid materials, lie nearer the sun, and are found within the orbit of Jupiter.[2] To conceive planetary systems as formed by the gradual contraction of a nebular ma.s.s, and by the solidification of some of its parts, is a favorite notion of several speculators. If we adopt this notion, we shall, I think, find additional proofs in favor of our view of the system. For, in the first place, we have the zodiacal light, a nebulous appendage to the Sun, as Herschel conceives, extending beyond the orbits of Mercury and Venus. These planets, then, have not yet fully emerged from the atmosphere in which they had their origin:–the _mother-light_ and _mother-fire_, in which they began to crystallize, as crystals do in their mother-water. Though they are already opaque, they are still immersed in luminous vapor: and bearing such traces of their chaotic state being not yet ended, we need not wonder, if we find no evidence of their having inhabitants, and some evidence to the contrary.

They are within a nebular region, which may easily be conceived to be uninhabitable. And where this nebular region, marked by the zodiacal light, terminates, the world of life begins, namely at the Earth.

7. But further, outside this region of the Earth, what do we find in the solar system? Of solid matter, if our views are right, we find nothing but an immense number of small bodies; namely, first, Mars, who, as we have said, is only about one-eighth the earth in ma.s.s: the twenty-six small planetoids, (or whatever number may have been discovered when these pages meet the reader’s eye,[3]) between Mars and Jupiter; the four satellites of Jupiter; the eight satellites of Saturn; the six (if that be the true number,) satellites of Ura.n.u.s; and the one satellite of Neptune, already detected. It is very remarkable, that all this array of small bodies begins to be found just outside the Earth’s…o…b..t.

Supposing, as we have found so much reason to suppose, that Jupiter, and the other exterior planets, are not solid bodies, but of water and of vapor; the existence of great solid planetary, such as exist in the region of the Earth’s…o…b..t, is succeeded externally by the existence of a vast number of smaller bodies. The real quant.i.ty of matter in these smaller bodies we cannot in general determine. Perhaps the largest of them, (after Mars,) may be Jupiter’s third satellite; which[4] is reckoned, by Laplace, to have a ma.s.s less than 1-10,000th of that of Jupiter himself; and thus, since Jupiter, as we have seen, has a ma.s.s 333 times that of the Earth, the satellite would be above 1-30th of the Earth’s ma.s.s.[5] That none but of this size, and many far below this, are found outside of Mars, appears to indicate, that the _planet-making_ powers which were efficacious to this distance from the sun, and which produced the great globe of the Earth, were, beyond this point, feebler; so that they could only give birth to smaller; to planetoids, to satellites, and to meteoric stones. Perhaps we may describe this want of energy in the planet-making power, by saying, that at so great a distance from the central fire, there was not heat enough to melt together these smaller fragments into a larger globe;[6] or rather, when they existed in a nebular, perhaps in a gaseous state, that there was not heat enough to keep them in that state, till the attraction of the parts of all of them had drawn them into one ma.s.s, which might afterwards solidify into a single globe. The tendency of nebular matter to separate into distinct portions, which may afterwards be more and more detached from each other, so as to break the nebulous light into patches and specks, appears to be seen in the structure of the resolvable nebulae, as we have already had occasion to notice. And according to the view we are now taking, we may conceive such patches, by further cooling and concentration, to remain luminous as comets, and perhaps shooting stars; or to become opaque as planets, planetoids, satellites, or meteoric stones. And here we may call to mind what we have already said, that the meteoric stones consist of the same elements as those of the earth, combined by the same laws; and thus appear to bring us a message from the other solid planets, that they also have the same elements and the same chemical forces as the earth has.

8. It has already been supposed, by many astronomers, that shooting stars, and meteoric stones, are bodies of connected nature and origin; and that they are cosmical, not terrestrial bodies;–parts of the solar system, not merely appendages to the earth. It has been conceived, that the luminous, which appear as shooting stars, when they are without the sphere of terrestrial influences, may, when they reach our atmosphere, collapse into such solid lumps as have from time to time fallen upon the earth’s surface: many of them, with such sudden manifestations of light and heat, as implied some rapid change taking place in their chemical const.i.tution and consistence. If shooting stars are of this nature, then, in those cases in which a great number of them appear in close succession, we have evidence that there is a region in which there is a large collection of matter of a nebulous kind, collected already into small clouds, and ready, by any additional touch of the powers that hover round the earth, to be further consolidated into planetary matter. That the earth’s…o…b..t carries her through such regions, in her annual course, we have evidence, in the curious fact, now so repeatedly observed, of showers of shooting stars, seen at particular seasons of every year; especially about the 13th of November, and the 10th of August. This phenomenon has been held, most reasonably, to imply that at those periods of the year, the earth through a crowd of such meteor-planets, which form a ring round the sun; and revolving round him, like the other planets, retain their place in the system from year to year.[7] It may be that the orbits of these meteor-planets are very elliptical. That they are to a certain extent elliptical, appears to be shown, by our falling in with them only once a year, not every half year, as we should do, if their orbit, being nearly circular, met the earth’s…o…b..t in two opposite points. That the shooting stars, thus seen in great numbers when the earth is at certain points of her orbit, are really planetoidal bodies, appears to be further proved by this;–that they all seem to move nearly in the same direction.[8] They are, each of them, visible for a short time only, (indeed commonly only for a few seconds), while they are nearest the earth; much in the same way in which a comet is visible only for a small portion of its path: and this portion is described in a short time, because they move near the earth. They are so small that a little change of distance removes them beyond our vision.

9. Perhaps these revolving specks of nebulae are the outriders of the zodiacal light; portions of it, which, being external to the permanently nebulous central ma.s.s, have broken into patches, and are seen as stars for the moment that we are near to them. And if this be true, we have to correct, in a certain way, what we have previously said of the zodiacal light;–that no one had thought of resolving it into stars: for it would thus appear, that in its outer region, it resolves itself into stars, visible, though but for a moment, to the naked eye.

10. And thus, all these phenomena concur in making it appear probable, that the Earth is placed in that region of the solar system in which the planet-forming powers are most vigorous and potent;–between the region of permanent nebulous vapor, and the region of mere shreds and specks of planetary matter, such as are the satellites and the planetoidal group.

And from these views, finally it follows, that the Earth is really the largest planetary body in the Solar System. The vast globes of Jupiter and Saturn, Ura.n.u.s and Neptune, which roll far above her, are still only huge of cloud and vapor, water and air; which, from their enormous size, are ponderous enough to retain round them a body of small satellites, perhaps, in some degree at least, solid; and which have perhaps a small lump, or a few similar lumps, of planetary matter at the centre of their watery globe. The Earth is really the domestic hearth of this Solar System; adjusted between the hot and fiery haze on one side, the cold and watery vapor on the other. This region only is fit to be a domestic hearth, a seat of habitation; and in this region is placed the largest solid globe of our system; and on this globe, by a series of creative operations, entirely different from any of those which separated the solid from the vaporous, the cold from the hot, the moist from the dry, have been established, in succession, plants, and animals, and man. So that the habitation has been occupied; the domestic hearth has been surrounded by its family; the fitnesses so wonderfully combined have been employed; and the Earth alone, of all the parts of the frame which revolves round the Sun, has become a World.

11. Perhaps it may tend still further to ill.u.s.trate, and to fix in the reader’s mind, the view of the const.i.tution of the solar system here given, if we remark an a.n.a.logy which exists, in this respect, between the Earth in particular, and the Solar System in general. The earth, like the central parts of the system, is warmed by the sun; and hence, drives off watery vapors into the circ.u.mambient s.p.a.ce, where they are condensed by the cold. The upper regions of the atmosphere, like the outer regions of the solar system, form the vapors thus raised into clouds, which are really only water in minute drops; while in the solar system, the cold of the outer regions, and the rotation of the themselves, maintain the water, and the vapor, in immense spheres. But Jupiter and Saturn may be regarded as, in many respects, immense clouds; the continuous water being collected at their centres, while the more airy and looser parts circulate above. They are the permanent receptacles of the superfluous water and air of the system. What is not wanted on the Earth, is stored up there, and hangs above us, far removed from our atmosphere; but yet, like the clouds in our atmosphere, an example, what glorious objects acc.u.mulations of vapor and water, illuminated by the rays of the sun, may become in our eyes.

12. These views are so different from those hitherto generally entertained, and considered as having a sort of religious dignity belonging to them, that we may fear, at first at least, they will appear to many, rash and fanciful, and almost, as we have said, irreverent. On the question of reverence we may hereafter say a few words; but as to the rashness of these views, we would beg the reader, calmly and dispa.s.sionately, to consider the very extraordinary number of points in the solar system, hitherto unexplained, which they account for, or, at least reduce into consistency and connection, in a manner which seems wonderful. The Theory, as we may perhaps venture to call it, brings together all these known phenomena;–the great size and small density of the exterior planets;–their belts and streaks;–Saturn’s ring;–Jupiter’s oblateness;–the great number of satellites of the exterior planets;–the numerous group of planetoid bodies between Jupiter and Mars;–the appearance of definite shapes of land and water on Mars;–the showers of shooting stars which appear at certain periods of the year;–the Zodiacal Light;–the appearance of Venus as different from Mars;–and finally, the material composition of meteoric stones.

13. Perhaps there are other phenomena which more readily find an explanation in this theory, than in any other: for instance, the recent discovery of a dim half-transparent ring, as an appendage to the luminous ring of Saturn, which has. .h.i.therto alone been observed. Perhaps this is the ring of vapor which may naturally be expected to accompany the ring of water. It is the annular atmosphere of the aqueous annulus.

But, the discovery of this faint ring being so new, and hitherto not fully unfolded, we shall not further press the argument, which, hereafter, perhaps, may be more confidently derived from its existence.

14. There are some other facts in the Solar System, which, we can hardly doubt, must have a bearing upon the views which we have urged; though we cannot yet undertake to explain that bearing fully. Not only do all the planetary bodies of the solar system, as well as the Sun himself, revolve upon their axes; but there is a very curious fact relative to these revolutions, which appears to point out a further connection among them. So far as has yet been ascertained, all those which we, in our theory, regard as solid bodies, Mercury, Venus, the Earth, and Mars, revolve in very nearly the same time: namely, in about twenty-four hours. All those larger, on the other hand, which we, in our theory, hold to be watery planets, Jupiter, Saturn, Ura.n.u.s, revolve, not in a longer time, as would perhaps have been expected, from their greater size, but in a shorter time; in less than half the time; in about ten hours. The near agreement of the times of revolution in each of these two groups, is an extremely curious fact; and cannot fail to lead our thoughts to the probability of some common original cause of these motions. But no such common cause has been suggested, by any speculator on these subjects. If, in this blank, even of hypotheses, one might be admitted, as at least a mode of connecting the facts, we might say, that the compound collection of solid materials, water, and air, of which the solar system consists, and of which our earth alone, perhaps, retains the combination, being, by whatever means, set a spinning round an axis, at the rate of one revolution in 24 hours, the solid which were detached from it, not being liable to much contraction, retained their rate of revolution; while the vaporous which were detached from the fluid and airy part, contracting much, when they came into a colder region, increased their rate of revolution on account of their contraction. That such an acceleration of the rate of revolution would be the result of contraction, is known from mechanical principles; and indeed, is evident: for the contraction of a circular ring of such matter into a narrower compa.s.s, would not diminish the linear velocity of its elements, while it would give them a smaller path to describe in their revolutions. Such an hypothesis would account, therefore, both for the nearly equal times of revolution of all the solid planets, and for the smaller period of rotation, which the larger planets show.

15. In what manner, however, portions are to be detached from such a rotating ma.s.s, so as to form solid planets on the one side, and watery planets on the other, and how these planets, so detached, are to be made to revolve round the Sun, in orbits nearly circular, we have no hypothesis ready to explain. And perhaps we may say, that no satisfactory, or even plausible, hypothesis to explain these facts, has been proposed: for the Nebular Hypothesis, the only one which is likely to be considered as worthy any notice on this subject, is too imperfectly worked out, as yet, to enable us to know, what it will or will not account for. According to that hypothesis, the nebular matter of a system, having originally a rotatory motion, gradually contracts; and separating, at various distances from the centre, forms rings; which again, breaking at some point of their circ.u.mference, are, by the mutual attraction of their parts, gathered up into one ma.s.s; which, when cooled down, so as to be opaque, becomes a planet; still revolving round the luminous ma.s.s which remains at the centre. That such a process, if we suppose the consistency, and other properties, of the nebulous matter to be such as to render it possible, would produce planetary revolving round a sun in nearly circular orbits, and rotating about their own axes, seems most likely; though it does not appear that it has been very clearly shown.[9] But no successful attempt has been made to deduce any laws of the distances from the centre, times of rotation, or other properties of such planets; and therefore, we cannot say that the nebular hypothesis is yet in any degree confirmed.

16. The Theory which we have ventured to propose, of the Solar System, agrees with the Nebular Hypothesis, so far as that hypothesis goes; if we suppose that there is, at the centre of the exterior planets, Jupiter, Saturn, Ura.n.u.s, and Neptune, a solid nucleus, probably small, of the same nature as the other planets. Such an addition to our theory is, perhaps, on all accounts, probable: for that circ.u.mstance would seem to determine, to particular points, the acc.u.mulation of water and vapors, to which we hold that those planets owe the greater part of their bulk. Those planets then, Jupiter, Saturn, and the others, are really small solid planets, with enormous oceans and atmospheres. The Nebular Hypothesis, in that case, is that part of our Hypothesis, which relates to the condensation of luminous nebular matter; while _we_ consider, further, the causes which, scorching the inner planets, and driving the vapors to the outer orbs, would make the region of the earth the only habitable part of the system.

17. The belief that other planets, as well as our own, are the seats of habitation of living things, has been entertained, in general, not in consequence of physical reasons, but in spite of physical reasons; and because there were conceived to be other reasons, of another kind, theological or philosophical, for such a belief. It was held that Venus, or that Saturn, was inhabited, not because any one could devise, with any degree of probability, any organized structure which would be suitable to animal existence on the surfaces of those planets; but because it was conceived that the greatness or goodness of the Creator, or His wisdom, or some other of His attributes, would be manifestly imperfect, if these planets were not tenanted by living creatures. The evidences of design, of which we can trace so many, and such striking examples, in our own sphere, the sphere of life, must, it was a.s.sumed, exist, in the like form, in every other part of the universe. The disposition to regard the Universe in this point of view, is very general; the disinclination to accept any change in our belief which seems, for a time, to interfere with this view, is very strong; and the attempt to establish the necessity of new views discrepant from these has, in many eyes, an appearance as if it were unfriendly to the best established doctrines of Natural Theology. All these apprehensions will, we trust, be shown, in the sequel, to be utterly unfounded: and in order that any such repugnance to the doctrines here urged, may not linger in the reader’s mind, we shall next proceed to contemplate the phenomena of the universe in their bearing upon such speculations.


[1] Other speculators also have regarded Saturn’s Ring as a ring of cloud or water. See _Cosmos_, III. 527 and 553.

[2] Humboldt has already remarked _(Cosmos_, I. 95, and III. 427), that the inner planets as far as Mars, and the outer ones beginning with Jupiter, form two groups having different properties. Also Encke. (See Humboldt’s Note.)

[3] Printed Oct. 19, 1853.

[4] Herschel, 540.

[5] It is probable, from the small density of Jupiter’s satellites, that they also consist in a great measure of water and vapor. Only one of them is denser than Jupiter himself.–_Cosmos_.

[6] It has, in our own day, even in the present year, been regarded as a great achievement of man to direct the fiery influences which he can command, so as to cast a colossal statue in a single piece, instead of casting it in several portions.

[7] Herschel, 900-905.

[8] Herschel, 901.

[9] Besides the curious relation of the times of rotation of the planets, just noticed, there is another curious relation, of their distance from the Sun, which any one, wishing to frame an hypothesis on the origin of our Solar System, ought by all means to try to account for.

The distances from the Sun, of the planets, Mercury, Venus, Earth, Mars, the Planetoids, Jupiter, Saturn, Ura.n.u.s, are nearly as the numbers,

4, 7, 10, 16, 28, 52, 100, 196:

now the excesses of each of these numbers above the first are,

3, 3, 6, 12, 24, 48, 96:

The Plurality of Worlds Part 1

If you are looking for The Plurality of Worlds Part 1 you are coming to the right place.
The Plurality of Worlds is a Webnovel created by Edward Hitchcock and William Whewell.
This lightnovel is currently completed.

The Plurality of Worlds.

by William Whewell and Edward Hitchc.o.c.k.


Although the opinions presented in the following Essay are put forwards without claiming for them any value beyond what they may derive from the arguments there offered, they are not published without some fear of giving offence. It will be a curious, but not a very wonderful event, if it should now be deemed as blamable to doubt the existence of inhabitants of the Planets and Stars, as, three centuries ago, it was held heretical to teach that doctrine. Yet probably there are many who will be willing to see the question examined by all the light which modern science can throw upon it; and such an examination can be undertaken to no purpose, except the view which has of late been generally rejected have the arguments in its favor fairly stated and candidly considered.

Though Revealed Religion contains no doctrine relative to the inhabitants of planets and stars; and though, till within the last three centuries, no Christian thinker deemed such a doctrine to be required, in order to complete our view of the attributes of the Creator; yet it is possible that at the present day, when the a.s.sumption of such inhabitants is very generally made and a.s.sented to, many persons have so mingled this a.s.sumption with their religious belief, that they regard it as an essential part of Natural Religion. If any such persons find their religious convictions interfered with, and their consolatory impressions disturbed, by what is said in this Essay, the Author will deeply regret to have had any share in troubling any current of pious thought belonging to the time. But, as some excuse, it may be recollected, that if such considerations had prevailed, this very doctrine, of the Plurality of Worlds, would never have been publicly maintained. And if such considerations are to have weight, it must be recollected, on the other hand, that there are many persons to whom the a.s.sumption of an endless mult.i.tude of Worlds appears difficult to reconcile with the belief of that which, as the Christian Revelation teaches us, has been done for this our World of Earth. In this conflict of religious difficulties, on a point which rather belongs to science than to religion, perhaps philosophical arguments may be patiently listened to, if urged as arguments merely; and in that hope, they are here stated, without reserve and without exaggeration.

All speculations on subjects in which Science and Religion bear upon each other, are liable to one of the two opposite charges;–that the speculator sets Philosophy and Religion at variance; or that he warps Philosophy into a conformity with Religion. It is confidently hoped that no candid reader will bring either of these charges against the present Essay. With regard to the latter, the arguments must speak for themselves. To the Author at least, they appear to be of no small philosophical force; though he is quite ready to weigh carefully and candidly any answers which may be offered to them. With regard to the amount of agreement between our Philosophy and Religion, it may perhaps be permitted to the Author to say, that while it appears to him that some of his philosophical conclusions fall in very remarkably with certain points of religious doctrine, he is well aware that Philosophy alone can do little in providing man with the consolations, hopes, supports, and convictions which Religion offers; and he acknowledges it as a ground of deep grat.i.tude to the Author of all good, that man is not left to Philosophy for those blessings; but has a fuller a.s.surance of them, by a more direct communication from Him.

Perhaps, too, the Author may be allowed to say, that he has tried to give to the book, not only a moral, but a scientific interest; by collecting his scientific facts from the best authorities, and the most recent discoveries. He would flatter himself, in particular, that the view of the Nebulae and of the Solar System, which he has here given, may be not unworthy of some attention on the part of astronomers and observers, as an occasion of future researches in the skies.


It is an interesting feature in the literature of our day, that so many minds are turning their attention to the bearings of science upon religion. With a few honorable exceptions, Christian scholars have regarded this as a most unpromising field, which they have left to the tilting and gladiatorship of scepticism. But we owe it mainly to the disclosures of geology, that the tables are beginning to be turned. For a long time suspected of being in league with infidelity, it was treated as an enemy, and Christians thought only of fortifying themselves against its attacks. But they are finding out, that if this science has been seen in the enemy’s camp, it was only because of their jealousy that it was compelled to remain there; like captives that are sometimes pushed forwards to cover the front rank and receive the fire of their friends. Judging from the number of works, some of them very able, that appear almost monthly from the press, in which ill.u.s.trations of religion are drawn from geology, we may infer that this science is beginning to be recognized by the friends of religion as an efficient auxiliary.

“The Plurality of Worlds,” now republished, is the most recent work of this description that has fallen under our notice. We can see no reason why an Essay of so much ability, in which the reasoning is so dispa.s.sionate, and opponents are treated so candidly, should appear anonymously. True, the author takes ground against some opinions widely maintained respecting the extent of the inhabited universe, and seems to suppose that he shall meet with little sympathy; and this may be his reason, though in our view quite insufficient, for remaining incognito.

We think he will find that there are a secret seven thousand, who never have bowed their understandings to a belief of many of the doctrines which he combats, and he might reasonably calculate that his reasoning will add seven thousand more to the number. We confess, however, that though we have long been of this number to a certain extent, we cannot go as far as this writer has done in his conclusions.

All the world is acquainted with Dr. Chalmers’ splendid Astronomical Discourses. a.s.suming, or rather supposing that he has proved, that the universe contains a vast number of worlds peopled like our own, he imagines the infidel to raise an objection to the mission of the Son of G.o.d, on the ground that this world is too insignificant to receive such an extraordinary interposition. His replies to this objection, drawn chiefly from our ignorance, are ingenious and convincing. But the author of the Plurality of Worlds doubts the premises on which the objection is founded. He thinks the facts of science will not sustain the conclusion that many of the heavenly bodies are inhabited; certainly not with moral and intellectual beings like man. Nay, by making his appeal to geology, he thinks the evidence strong against such an opinion. This science shows us that this world was once certainly in a molten state, and very probably, at a still earlier date, may have been dissipated into self-luminous vapor, like the nebulae or the comets. Immense periods, then, must have pa.s.sed before any organic structures, such as have since peopled the earth, could have existed. And during the vast cycles that have elapsed since the first animals and plants appeared upon the globe, it was not in a proper condition to have sustained any other than the inferior races. Accordingly, it has been only a few thousand years since man appeared.

Now, so far as astronomy has revealed the condition of other worlds, almost all of them appear to be pa.s.sing through those preparatory changes which the earth underwent previous to man’s creation. What are the unresolvable nebulae and most of the comets also, but intensely heated vapor and gas? What is the sun but a molten globe, or perhaps gaseous matter condensed so as to possess almost the density of water?

The planets beyond Mars, also, (excluding the asteroids,) appear to be in a liquid condition, but not from heat, and therefore may be composed of water, or some fluid perhaps lighter than water; or at least be covered by such fluid. Moreover, so great is their distance from the sun, that his light and heat could not sustain organic beings such as exist upon the earth. Of the inferior planets, Mercury is so near the sun that it would be equally unfit for the residence of such beings.

Mars, Venus, and the Moon, then, appear to be the only worlds known to us capable of sustaining a population at all a.n.a.logous to that upon earth. But of these, the Moon appears to be merely a ma.s.s of extinguished volcanos, with neither water nor atmosphere. It has proceeded farther in the process of refrigeration than the earth, because it is smaller; and in its present state, is manifestly unfit for the residence either of rational or irrational creatures. So that we are left with only Mars and Venus in the solar system to which the common arguments in favor of other worlds being inhabited, will apply.

But are not the fixed stars the suns of other systems? We will thank those who think so, to read the chapter in this work that treats of the fixed stars, and we presume they will be satisfied that at least many of these bodies exhibit characters quite irreconcilable with such an hypothesis. And if some are not central suns, the presumption that the rest are, is weakened, and we must wait till a greater perfection of instruments shall afford us some positive evidence, before we know whether our solar system is a type of any others.

Thus far, it seems to us, our author has firm ground, both geological and astronomical, to stand upon. But he does not stop here. He takes the position that probably our earth may be the only body in the solar system, nay in the universe, where an intellectual, moral and immortal being, like man, has an existence. He makes the “earth the domestic hearth of the solar system; adjusted between the hot and fiery haze on one side, and the cold and watery vapor on the other: the only fit region to be a domestic hearth, a seat of habitation.” He says that “it is quite agreeable to a.n.a.logy that the solar system should have borne but one fertile flower. And even if any number of the fixed stars were also found to be barren flowers of the sky, we need not think the powers of creation wasted, or frustrated, thrown away, or perverted.” He does not deny that some other worlds may be the abodes of plants and animals such as peopled this earth during the long ages of preadamic history.

But he regards the creation of man as the great event of our world. He looks upon the s.p.a.ce between man and the highest of the irrational creatures, as a vast one: for though in physical structure they approach one another, in intellectual and moral powers they cannot be compared.

He does not think it derogatory to Divine Wisdom to have created and arranged all the other bodies of the universe to give convenience and elegance to the abode of such a being; especially since this was to be the theatre of the work of redemption.

Now we sympathize strongly in views that give dignity and exaltation to man, and not at all with that debasing philosophy, so common at this day, that looks upon him as little more than a somewhat improved orang.

But we cannot admit that man is the only exalted created being to be found among the vast array of worlds around us. Geology does, indeed, teach us, that it is no disparagement of Divine Wisdom and benevolence to make a world–and if one, why not many–the residence of inferior creatures; nay to leave it without inhabitants through untold ages. But it also shows us, that when such worlds have pa.s.sed through these preparatory changes, rational and immortal beings may be placed upon them. Nay, does not the history of our world show us that this seems to be the grand object of such vast periods of preparation. And is it not incredible, that amid the countless bodies of the universe, a single globe only, and that a small one, should have reached the condition adapted to the residence of beings made in the image of G.o.d? Of what possible use to man are those numberless worlds visible only through the most powerful telescopes? Surely such a view gives us a very narrow idea of the plans and purposes of Jehovah, and one not sustained in our opinion by the a.n.a.logies of science.

There is another principle to which our author attaches, as we think, too little importance in this connection. When we see how vast is the variety of organic beings on this globe, and how manifold the conditions of their existence; how exactly adapted they are to the solid, the liquid, and the gaseous states of matter, can we doubt that rational and intelligent beings may be adapted to physical conditions in other worlds widely diverse from those on this globe? May not spirits be connected with bodies much heavier, or much lighter, than on earth; nay, with mere tenuous ether; and those bodies, perhaps, be better adapted to the play of intellect than ours; and be unaffected by temperatures which, on earth, would be fatal? It does seem to us that such conclusions are legitimate inferences from the facts of science; and if so, we can hardly avoid the conclusion that there may be races of intelligent beings upon other worlds where the condition of things is widely different from that on earth. Yet there is a limit to this principle; and when we can prove another world to be in a similar condition to our earth, when it was inhabited by preadamic races, or not at all inhabited, the presumption is strong, that such a world has inhabitants of a like character, or none at all.

Our author makes but a slight allusion to some most important statements of revelation, that seem to us to bear strongly upon the hypothesis which he adopts. We refer to the existence of angels, holy and unholy.

In the history of the latter, we learn that _they kept not their first estate, but left their own habitation_. Have we not here an example of other rational creatures, more exalted than man, who, like him, have fallen from their first estate; and does not the presumption hence arise, that there may be similar examples in other worlds? And is there not a probability, that holy angels now in heaven, may be rational intelligences who have pa.s.sed a successful probation in other worlds? It does seem to us, that these biblical facts make the hypothesis of our author respecting man extremely improbable.

But though we must demur as to some of the views of this work, we can cordially recommend its perusal to intelligent and reasoning minds. It is an effort in the right direction, and we think will do much to correct some false notions respecting the Plurality of Worlds. And even the author’s peculiar hypothetical views are sustained with much ability. He states the facts of geology and astronomy with great clearness and correctness, and seems quite familiar with mathematical reasoning. Nor does he advance opinions that come into collision with natural or revealed religion; though, as already stated, we think his favorite notions narrow our conceptions of the Divine plans and purposes. We predict for the work an extended circulation among scientific men and theologians; and commend it with confidence to all readers–and in our country they are numerous–who are fond of tracing out the connection between science and religion.

E. H.

Amherst College, April, 1854.




“When I consider the heavens, the work of thy fingers, the moon and the stars, which thou hast ordained; What is man, that thou art mindful of him? and the son of man, that thou visitest him?”

1. These striking words of the Hebrew Psalmist have been made, by an eloquent and pious writer of our own time, the starting point of a remarkable train of speculation. Dr. Chalmers, in his _Astronomical Discourses_, has treated the reflection thus suggested, in connection with such an aspect of the heavens and the stars, the earth and the universe, as modern astronomy presents to us. Even from the point of view in which the ancient Hebrew looked at the stars; seeing only their number and splendor, their lofty position, and the vast s.p.a.ce which they visibly occupy in the sky; compared with the earth, which lies dark, and mean, and perhaps small in extent, far beneath them, and on which man has his habitation; it appeared wonderful, and scarcely credible, that the maker of all that array of luminaries, the lord of that wide and magnificent domain, should occupy himself with the concerns of men: and yet, without a belief in His fatherly care and goodness to us, thoughtful and religious persons, accustomed to turn their minds constantly to a Supreme Governor and constant Benefactor, are left in a desolate and bewildered state of feeling. The notion that while the heavens are the work of G.o.d’s fingers, the sun, moon, and stars ordained by him, He is _not_ mindful of man, does not regard him, does not visit him, was not tolerable to the thought of the Psalmist. While we read, we are sure that he believed that, however insignificant and mean man might be, in comparison with the other works of G.o.d,–however difficult it might seem to conceive, that he should be found worthy the regards and the visits of the Creator of All,–yet that G.o.d _was_ mindful of him, and _did_ visit him. The question, “What is man, that this is so?”

implies that there is an answer, whether man can discover it or not.

“_What_ is man, that G.o.d is mindful of him?” indicates a belief, unshaken, however much perplexed, that man is _something_, of such a kind that G.o.d _is_ mindful of him.

2. But if there was room for this questioning, and cause for this perplexity, to a contemplative person, who looked at the skies, with that belief concerning the stars, which the ancient Hebrew possessed, the question recurs with far greater force, and the perplexity is immeasurably increased, by the knowledge, concerning the stars, which is given to us by the discoveries of modern astronomy. The Jew probably believed the earth to be a region, upon the whole, level, however diversified with hills and valleys, and the skies to be a vault arched over this level;–a firmament in which the moon and the stars were placed. What magnitude to a.s.sign to this vault, he had no means of knowing; and indeed, the very aspect of the nocturnal heavens, with the mult.i.tude of stars, of various brightness, which come into view, one set after another, as the light of day dies away, suggests rather the notion of their being scattered through a vast depth of s.p.a.ce, at various distances, than of their being so many lights fastened to a single vaulted surface. But however he might judge of this, he regarded them as placed in a s.p.a.ce, of which the earth was the central region. The host of heaven all had reference to the earth. The sun and the moon were there, in order to give light to it, by day and by night. And if the stars had not that for their office, as indeed the amount of light which they gave was not such as to encourage such a belief,–and perhaps the perception, that the stars must have been created for some other object than to give light to man, was one of the circ.u.mstances which suggested the train of thought that we are now considering;–yet still, the region of the stars had the earth for its centre and base. Perhaps the Psalmist, at a subsequent period of his contemplations, when he was pondering the reflections which he has expressed in this pa.s.sage, might have been led to think that the stars were placed there in order to draw man’s thoughts to the greatness of the Creator of all things; to give some light to his mental, rather than to his bodily eye; to show how far His mode of working transcends man’s faculties; to suggest that there are things in heaven, very different from the things which are on earth. If he thought thus, he was only following a train of thought on which contemplative minds, in all ages and countries, have often dwelt; and which we cannot, even now, p.r.o.nounce to be either unfounded or exhausted; as we trust hereafter to show. But whether or not this be so, we may be certain that the Psalmist regarded the stars, as things having a reference to the earth, and yet not resembling the earth; as works of G.o.d’s fingers, very different from the earth with its tribes of inhabitants; as luminaries, not worlds. In the feeling of awe and perplexity, which made him ask, “What is man that thou art mindful of him?” there was no mixture of a persuasion that there were, in those luminaries, creatures, like man, the children and subjects of G.o.d; and therefore, like man, requiring his care and attention. In asking, “What is man, that thou visitest him?” there was no latent comparison, to make the question imply, “that thou visitest _him_, rather than those who dwell in those abodes?” It was the mult.i.tude and magnificence of G.o.d’s works, which made it seem strange that he should care for a _thing_ so small and mean as man; not the supposed mult.i.tude of G.o.d’s intelligent creatures inhabiting those works, which made it seem strange that he should attend to every _person_ upon this earth. It was not that the Psalmist thought that, among a mult.i.tude of earths, all peopled like this earth, man might seem to be in danger of being overlooked and neglected by his Maker; but that, there being only one earth, occupied by frail, feeble, sinful, short-lived creatures, it might be unworthy the regards of Him who dwelt in regions of eternal light and splendor, unsullied by frailty, inaccessible to corruption.

3. This, we can have no doubt, or something resembling this, was the Psalmist’s view, when he made the reflection, which we have taken as the basis of our remarks. And even in this view, (which, after all that science has done, is perhaps still the most natural and familiar,) the reflection is extremely striking; and the words cannot be uttered without finding an echo in the breast of every contemplative and religious person. But this view is, as most readers at this time are aware, very different from that presented to us by Modern Astronomy. The discoveries made by astronomers are supposed by most persons to have proved, or to have made it in the highest degree probable, that this view of the earth, as the sole habitation of intelligent subjects of G.o.d’s government; and of the stars, as placed in a region of which the earth is the centre, and yet differing in their nature from this lower world; is altogether erroneous. According to astronomers, the earth is not a level s.p.a.ce, but a globe. Some of the stars which we see in the vault of heaven, are globes, like it; some smaller than the earth, some larger. There are reasons, drawn from a.n.a.logy, for believing that these globes, the other planets, are inhabited by living creatures, as the earth is. The earth is not at rest, with the celestial luminaries circulating above it, as the ancients believed, but itself moves in a circle about the sun, in the course of every year; and the other planets also move round the sun in like manner, in circles, some within and some without that which the earth describes. This collection of planets, thus circulating about the sun, is the SOLAR SYSTEM: of which the earth thus forms a very small part. Jupiter and Saturn are much larger than the earth. Mars and Venus are nearly as large. If these be inhabited, as the Earth is, which the a.n.a.logy of their form, movements and conditions, seems to suggest, the population of the earth is a very small portion of the population of the solar system. And if the mere number of the subjects of G.o.d’s government could produce any difficulty in the application of his providence to them, a person to whom this view of the world which we inhabit had been disclosed, might well, and with far more reason than the Psalmist, exclaim, “Lord, what is man, that thou art mindful of him? the inhabitants of this Earth, that thou regardest him?”

4. But this is only the first step in the a.s.serted revelations of astronomy. Some of the stars are, as we have said, planets of the kind just described. But these stars are a few only:–five, or at most six, of those visible to the una.s.sisted eye of man. All the rest, innumerable as they appear, and numerous as they really are, are, it is found, objects of another kind. They are not, as the planets are, opaque globes, deriving their light from a sun, about which they circulate.

They shine by a light of their own. They are of the nature of the sun, not of the planets. That they appear mere specks of light, arises from their being at a vast distance from us. At a vast distance they undoubtedly are; for even with our most powerful telescopes, they still appear mere specks of light;–mere luminous points. They do not, as the planets do, when seen through telescopes, exhibit to us a circular face or disk, capable of being magnified and distinguished into parts and features. But this impossibility of magnifying them by means of telescopes, does not at all make us doubt that they may be far larger than the planets. For we know, from other sources of information, that their distance is immensely greater than that of any of the planets. We can measure the bodies of the solar system;–the earth, by absolutely going round a part of it, or in other ways; the other bodies of the system, by comparing their positions, as seen from different parts of the earth. In this manner we find that the earth is a globe 8,000 miles in diameter. In this way, again, we find that the circle which the earth describes round the sun has, in round numbers, a radius about 24,000 times the earth’s radius; that is, nearly a hundred millions of miles.

The earth is, at one time, a hundred millions of miles on one side of the sun; and at another time, half a year afterwards, a hundred millions of miles on the other side. Of the bright stars which shine by their own light,–the _fixed stars_, as we call them, (to distinguish them from the planets, the _wandering stars_,)–if any one were at any moderate distance from us, we should see it change its apparent place with regard to the others, in consequence of our thus changing our point of view two hundred millions of miles: just as a distant spire changes its apparent place with regard to the more distant mountain, when we move from one window of our house to the other. But no such change of place is discernible in any of the fixed stars: or at least, if we believe the most recent a.s.serted discoveries of astronomers, the change is so small as to imply a distance in the star, of more than two hundred thousand times the radius of the earth’s…o…b..t, which is, itself, as we have said, one hundred millions of miles.[1] This distance is so vastly great, that we can very well believe that the fixed stars, though to our best telescopes they appear only as points of light, are really as large as our sun, and would give as much light as he does, if we could approach as near to them. For since they are thus, the nearest of them, two hundred thousand times as far off as he is, even if we could magnify them a thousand times, which we can hardly do, they would still be only one two-hundredth of the breadth of the sun; and thus, still a mere point.

5. But if each fixed star be of the nature of the sun, and not smaller than the sun, does not a.n.a.logy lead us to suppose that they have, some of them at least, planets circulating about them, as our sun has? If the Sun is the centre of the Solar System, why should not Sirius, (one of the brightest of the fixed stars,) be the centre of the _Sirian System_?

And why should not that system have as many planets, with the same resemblances and differences of the figure, movements, and conditions of the different planets, as this? Why should not the Sirian System be as great and as varied as the solar system? And this being granted, why should not these planets be inhabited, as men have inferred the other planets of the solar system, as well as the earth, to be? And thus we have, added to the population of the universe of which we have already spoken, a number (so far as we have reason to believe) not inferior to the number of inhabitants of the solar system: this number being, according to all the a.n.a.logies, very many fold that of the population of the whole earth?

And this is the conclusion, when we reason from one star only, from Sirius. But the argument is the same, from each of the stars. For we have no reason to think that Sirius, though one of the brightest, is more like our sun than any of the others is. The others appear less bright in various degrees, probably because they are further removed from us in various degrees. They may not be all of the same size and brightness; it is very unlikely that they are. But they may as easily be larger than the sun, as smaller. The natural a.s.sumption for us to make, having no ground for any other opinion, is, that they are, upon the average, of the size of our sun. On that a.s.sumption, we have as many solar systems as we have fixed stars; and, it may be, six or ten, or twenty times as many inhabited globes; inhabited by creatures of whom we must suppose, by a.n.a.logy, that G.o.d is mindful, if he is mindful of us. The question recurs with overwhelming force, if we still follow the same train of reflection: “What is man, that G.o.d is mindful of him?”

6. But we have not yet exhausted the views which thus add to the force of this reflection. The fixed stars, which appear to the eye so numerous, so innumerable, in the clear sky on a moonless night, are not really so numerous as they seem. To the naked eye, there are not visible more than four or five thousand. The astronomers of Greece, and of other countries, even in ancient times, counted them, mapped them, and gave them names and designations. But Astronomy, who thus began her career by diminishing, in some degree, the supposed numbers of the host of heaven, has ended by immeasurably increasing them. The first application of the telescope to the skies discovered a vast number of fixed stars, previously unseen: and every improvement in that instrument has disclosed myriads of new stars, visibly smaller than those which had before been seen; and smaller and smaller, as the power of vision is more and more strengthened by new aids from art; as if the regions of s.p.a.ce contained an inexhaustible supply of such objects; as if infinite s.p.a.ce were strewn with stars in every part of it to which vision could reach. The small patch of the sky which forms, at any moment, the field of view of one of the great telescopes of Herschel, discloses to him as many stars, and those of as many different magnitudes, as the whole vault of the sky exhibits to the naked eye. But the magnifying power of such an instrument only discloses, it does not make, these stars. There appears to be quite as much reason to believe, that each of these telescopic stars is a sun, surrounded by its special family of planets, as to believe that Sirius or Arcturus is so. Here, then, we have again an extension, indefinite to our apprehension, of the universe, as occupied by material structures; and if so, why not by a living population, such as the material structures which are nearest to us support?

7. Even yet we have not finished the series of successive views which astronomers have had opened to them, extending more and more their spectacle of the fulness and largeness of the universe. Not only does the telescope disclose myriads of stars, unseen to the naked eye, and new myriads with each increase of the powers of the instrument; but it discloses also patches of light, which, at first at least, do not appear to consist of stars: _Nebulae_, as they are called; bright specks, it might seem, of stellar matter, thin, diffused, and irregular; not gathered into regular and definite forms, such as we may suppose the stars to be. Every one who has noticed the starry skies, may understand what is the general aspect of such nebulae, by looking at the milky way or galaxy, an irregular band of nebulous light, which runs quite round the sky; “A circling zone, powdered with stars;” as Milton calls it. But the nebulae of which I more especially speak, are minute patches, discovered mainly by the telescope, and in a few instances only discernible by the naked eye. And what I have to remark especially concerning them at present is, that though to visual powers which barely suffice to discern them, they appear like mere bright clouds, patches of diffused starry matter; yet that, when examined by visual powers of a higher order, by more penetrating telescopes, these patches of continuous feeble light are, in many instances at least, distinguishable into definite points: they are found, in fact, to be aggregations of stars; which before appeared as diffused light, only because our telescopes, though strong enough to reveal to our senses the aggregate ma.s.s of light of the cl.u.s.ter, were not strong enough to enable us to discern any one of the stars of which the cl.u.s.ter consists. The galaxy, in this way, may, in almost every part, be _resolved_ into separate stars; and thus, the mult.i.tude of the stars in the region of the sky occupied by that winding stream of light, is, when examined by a powerful telescope, inconceivably numerous.

8. The small telescopic nebulae are of various forms; some of them may be in the shape of flat strata, or cakes, as it were, of stars, of small thickness, compared with the extent of the stratum. Now, if our sun were one of the individuals of such a stratum, we, looking at the stars of the stratum from his neighborhood, should see them very numerous and close in the direction of the edge of the stratum, and comparatively few and rare in other parts of the sky. We should, in short, see a galaxy running round the sky, as we see in fact. And hence Sir William Herschel has inferred, that our sun, with its attendant planets, has its place in such a stratum; and that it thus belongs to a host of stars which are, in a certain way, detached from the other nebulae which we see. Perhaps, he adds, some of those other nebulae are beds and of stars not less numerous than those which compose our galaxy, and which occupy a larger portion of the sky, only because we are immersed in the interior of the crowd. And thus, a minute speck of nebulous light, discernible only by a good telescope, may contain not only as many stars as occupy the sky to ordinary vision, but as many as is the number into which the most powerful telescope resolves the milky light of the galaxy. And of such resolvable nebulae the number which are discovered in the sky is very great, their forms being of the most various kind; so that many of them may be, for aught we can tell, more amply stocked with stars than the galaxy is. And if all the stars, or a large proportion of the stars, of the galaxy, be suns attended by planets, and these planets peopled with living creatures, what notion must we form of the population of the universe, when we have thus to reckon as many galaxies as there are resolvable nebulae! the stock of discoverable nebulae being as yet unexhausted by the powers of our telescopes; and the possibility of resolving them into stars being also an operation which has not yet been pursued to its limit.

9. For, (and this is the last step which I shall mention in this long series of ascending steps of mult.i.tude apparently infinite,) it now begins to be suspected that not some nebulae only, but _all_, are resolvable into separate stars. When the nebulae were first carefully studied, it was supposed that they consisted, as they appeared to consist, of some diffused and incoherent matter, not of definite and limited It was conceived that they were not stars, but Stellar Matter in the course of formation into stars; and it was conceived, further, that by the gradual concentration of such matter, whirling round its centre while it concentrated, not only stars, that is, suns, might be formed, but also systems of planets, circling round these suns; and thus this _Nebular Hypothesis_, as it has been termed, gave a kind of theory of the origin and formation of systems, such as the solar system. But the great telescope which Lord Rosse has constructed, and which is much more powerful than any optical instrument yet fabricated, has been directed to many of the nebulae, whose appearance had given rise to this theory; and the result has been, in a great number of cases, that the nebulae are proved to consist entirely of distinct stars; and that the diffused nebulous appearance is discovered to have been an illusion, resulting from the acc.u.mulated light of a vast number of small stars near to each other. In this manner, we are led to regard every nebula, not as an imperfectly formed star or system, but as a vast mult.i.tude of stars, and, for aught we can tell, of systems; for the apparent smallness and nearness of these stars are, it is thought, mere results of the vast distance at which they are placed from us. And thus, perhaps, all the nebulae are, what some of them seem certainly to be, so many vast armies of stars, each of which stars, we have reason to believe, is of the nature of our sun; and may have, and according to a.n.a.logy has, an accompaniment of living creatures, such as our sun has, certainly on the earth, probably, it is thought, in the other planets.

10. It is difficult to grasp, in one view, the effect of the successive steps from number to number, from distance to distance, which we have thus been measuring over. We may, however, state them again briefly, in the way of enumeration.

From our own place on the earth, we pa.s.s, in thought, as a first step, to the whole globe of the Earth; from this, as a second step, to the Planets, the other globes which compose the Solar System. A third step carries us to the Fixed Stars, as visible to the naked eye; very numerous and immensely distant. The transition to the Telescopic Stars makes a fourth step; and in this, the number and the s.p.a.ce are increased, almost beyond the power of numbers to express how many there are, and at what distances. But a fifth step:–perhaps all this array of stars, obvious and telescopic, only make up our Nebula; while the universe is occupied by other Nebulae innumerable, so distant that, seen from them, our nebula, though including, it may be, stars of the 20th magnitude, which may be 20 times or 2,000 times more remote than Sirius, would become a telescopic speck, as their nebulae are to us.

11. Various images and modes of representation have been employed, in order to convey to the mind some notion of the dimensions of the scheme of the universe to which we are thus introduced. Thus, we may reckon that a cannon-ball, moving with its usual original velocity unabated, would describe the interval between the sun and the earth in about one year. And this being so, the same missile would, from what has been said, occupy more, we know not how much more, than 200,000 years in going to the nearest fixed star: and perhaps a thousand times as much, in going to other stars belonging to our group; and then again, 200,000 times so much, or some number of the like order, in going from one group to another. When we have advanced a step or two in this mode of statement, the velocity of the cannon-ball hardly perceptibly affects the magnitude of the numbers which we have to use.

And the same nearly is the case if we have recourse to the swiftest motion with which we are acquainted; that of Light. Light travels, it is shown by indisputable scientific reasonings, in about eight minutes from the sun to the earth. Hence we can easily calculate that it would occupy at least three years to travel as far as Sirius, and probably, three thousand years, or a much greater number, to reach to the smallest stars, or to come from them to us. And thus, as Sir W. Herschel remarked, since light is the only vehicle by which information concerning these distant bodies is conveyed to us, we do, by seeing them, receive information, not what they are at this moment, but what they were, as to visible condition, thousands of years ago. Stars may have been created when man was created, and yet their light may not have reached him.[2] Stars may have been extinguished thousands of years ago, and yet may still be visible to our eyes, by means of the light which they emitted previous to their extinction, and which has not yet died away.

The Plurality of Worlds Part 3

If you are looking for The Plurality of Worlds Part 3 you are coming to the right place.
The Plurality of Worlds is a Webnovel created by Edward Hitchcock and William Whewell.
This lightnovel is currently completed.

23. And as the infinite extent which we necessarily ascribe to s.p.a.ce, allows us to find room, without any mental difficulty, for the vast distances which astronomy reveals, and even leaves us rather embarra.s.sed with the infinite extent which lies beyond our farthest explorations; so the infinite duration which we, in like manner, necessarily ascribe to past time, makes it easy for us, so far as our powers of intellect are concerned, to go millions of millions of years backwards, in order to trace the beginning of the earth’s existence,–the first step of terrestrial creation. It is as easy for the mind of man to reason respecting a system which is billions or trillions of miles in extent, and has endured through the like number of years, or centuries, as it is to reason about a system (the earth, for instance,) which is forty million feet in extent, and has endured for a hundred thousand million of seconds, that is, a few thousand years.

24. This statement is amply sufficient for the argument which we have to found upon it; but before I proceed to do that, I will give another view which has recently been adopted by some geologists, of the mode in which the successive periods of creation, which geological research discloses to us, have pa.s.sed into one another. According to this new view, we find no sufficient reason to believe that the history of the earth, as read by us in the organic and mechanical phenomena of its superficial parts, has consisted of such an alternation of periods of violence and of repose, as we have just attempted to describe. According to these theorists, strata have succeeded strata, one group of animals and plants has followed another, through a season of uniform change; with no greater paroxysm or catastrophe, it may be, than has occurred during the time that man has been an observer of the earth. It may be asked, how is this consistent with the phenomena which we have described;–with the vast of ruin, which mark the end of one period and the beginning of another, as is the case in pa.s.sing from the coal measures of England to the superinc.u.mbent beds;–with the highly-inclined strata of the central, and the level beds of the upper formations which have been described as marking the mountain ranges of Europe? To these questions, a reply is furnished, we are told, by a more extensive and careful examination of the strata. It may be, that in certain localities, in certain districts, the transition, from the mountain limestone and the coal, to the superjacent sandstones and oolites, is abrupt and seemingly violent; marked by _unconformable_ positions of the upper upon the lower strata, by beds of conglomerate, by the absence of organic remains in certain of these beds. But if we follow these very strata into other parts of the world, or even into other parts of this island, we find that this abruptness and incongruity between the lower and the higher strata disappears. Between the mountain-limestone and the red sandstone which lies over it, certain new beds are found, which fill up the incoherent interval; which offer the same evidence as the strata below and above them, of having been produced tranquilly; and which do not violently differ in position from either group. The appearance of incoherence in the series arose from the occurrence, in the region first examined, of a gap, which is here filled up,–a blank which is here supplied. Hence it is inferred, that whatever of violence and extreme disturbance is indicated by the dislocations and ruins there observed, was local and partial only; and that, at the very time when these fragmentary beds, void of organized beings, were forming in one place, there were, at the same time, going on, in another part of the earth’s surface, not far removed, the processes of the life, death and imbedding of species, as tranquilly as at any other period. And the same a.s.sertion is made with regard to the more general fact, before described, of the stratigraphical const.i.tution of mountain chains. It is a.s.serted that the unconformable relation of the strata which compose the different parts of those chains, is a local occurrence only; and that the same strata, if followed into other regions, are found conformable to each other; or are reduced to a virtually continuous scheme, by the interpolation of other strata, which make a transition, in which no evidence of exceptional violence appears.

25. We shall not attempt (it is not at all necessary for us to do so) to decide between the doctrines of the two geological schools which thus stand in this opposition to each other. But it will be useful to our argument to state somewhat further the opinions of this latter school on one main point. We must explain the view which these geologists take of the mode of succession of one group of _organized_ beings to another; by which, as we have said, the different successive strata are characterized. Such a phenomenon, it would at first seem, cannot be brought within the ordinary rules of the existing state of things. The species of plants and animals which inhabit the earth, do not change from age to age; they are the same in modern times, as they were in the most remote antiquity, of which we have any record. The dogs and horses, sheep and cattle, lions and wolves, eagles and swallows, corn and vines, oaks and cedars, which occupy the earth now, are not, we have the strongest reasons to believe, essentially different now from what they were in the earliest ages. At least, if one or two species have disappeared, no new species have come into existence. We cannot conceive a greater violation of the known laws of nature, than that such an event as the appearance of a new species should have occurred. Even those who hold the uniformity of the mechanical changes of the earth, and of the rate of change, from age to age, and from one geological period to another; must still, it would seem, allow that the zoological and phytological changes of which geology gives her testimony, are complete exceptions to what is now taking place. The formation of strata at the bottom of the ocean from the ruin of existing continents, may be going on at present. Even the elevation of the bed of the ocean in certain places, as a process imperceptibly slow, may be in action at this moment, as these theorists hold that it is. But still, even when the beds thus formed are elevated into mountain chains, if that should happen, in the course of myriads of years, (according to the supposition it cannot be effected in a less period,) the strata of such mountain chains will still contain only the species of such creatures as now inhabit the waters; and we shall have, even then, no succession of organic epochs, such as geology discovers in the existing mountains of the earth.

26. The answer which is made to this objection appears to me to involve a license of a.s.sumption on the part of the _uniformitarian_ geologist, (as such theorists have been termed,) which goes quite beyond the bounds of natural philosophy: but I wish to state it; partly, in order to show that the most ingenious men, stimulated by the exigencies of a theory, which requires some hypothesis concerning the succession of species, to make it coherent and complete, have still found it impossible to bring the creation of species of plants and animals within the domain of natural science; and partly, to show how easily and readily geological theorists are led to a.s.sume periods of time, even of a higher order than those which I have ventured to suggest.

27. It must, however, be first stated, as a fact on which the a.s.sumption is founded which I have to notice, that the organic groups by which these successive strata are characterized, are not so distinct and separate, as it was convenient, for the sake of explanation, to describe them in the first instance. Although each body of strata is marked by predominant groups of genera and species, yet it is not true, that all the species of each formation disappear, when we proceed to the next.

Some species and genera endure through several successive groups of strata; while others disappear, and new forms come into view, as we ascend. And thus, the change from one set of organic forms to another, as we advance in time, is made, not altogether by abrupt transitions, but in part continuously. The uniformitarian, in the case of organic, as in the case of mechanical change, obliterates or weakens the evidence of sudden and catastrophic leaps, by interposing intermediate steps, which involve, partly the phenomena of the preceding, and partly those of the subsequent condition. As he allows no universal transition from one deposit to a succeeding discrepant and unconformable deposit, so he allows no abrupt and complete transition from one collection of organic beings,–one creation, as we may call it,–to another. If creation must needs be an act out of the region of natural science, he will have it to be at least an act not exercised at distant intervals, and on peculiar occasions; but constantly going on, and producing its effects, as much at one time in the geological history of the world, as at another.

28. And this he holds, not only with regard to the geological periods which have preceded the existing condition of the earth, but also with regard to the transition from those previous periods to that in which we live. The present population of the earth is not one in which all previous forms are extinct. The past population of the earth was not one in which there are found no creatures still living. On the contrary, he finds that there exists a vast ma.s.s of strata, superior to the secondary strata, which are characterized by extinct forms, and are yet inferior to those deposits which are now going on by the agency of obvious causes. These of strata contain a population of creatures, partly extinct species, and partly such species as are still living on our land and in our waters. The proportion in which the old and the new species occur in such strata, is various; and the strata are so numerous, so rich in organic remains, so different from each other, and have been so well explored, that they have been cla.s.sified and named according to the proportion of new and of old species which they contain. Those which contain the largest proportion of species still living, have been termed _Pliocene_, as containing a _greater_ number of _new_ or recent species.

Below these, are strata which are termed _Miocene_, implying a _smaller_ number of _new_ species. Below these again, are others which have been termed _Eocene_, as containing few new species indeed, but yet enough to mark the _dawn_, the _Eos_, of the existing state of the organic world.

These strata are, in many places, of very considerable thickness; and their number, their succession, and the great amount of extinct species which they contain, shows, in a manner which cannot be questioned, (if the evidence of geology is accepted at all,) in what a gradual manner, a portion at least, of the existing forms of organic life have taken the place of a different population previously existing on the surface of the globe.

29. And thus the uniformitarian is led to consider the facts which geology brings to light, as indicating a slow and almost imperceptible, but, upon the whole, constant series of changes, not only in the position of the earth’s materials, but in its animal and vegetable population. Land becomes sea and sea becomes land; the beds of oceans are elevated into mountain regions, carrying with them the remains of their inhabitants; sheets of lava pour from volcanic vents and overwhelm the seats of life; and these, again, become fields of vegetation; or, it may be, descend to the depths of the sea, and are overgrown with groves of coral; lakes are filled with sediment, imbedding the remains of land animals, and form the museums of future zoologists; the deltas of mighty rivers become the centres of continents, and are excavated as coal-fields by men in remote ages. And yet all this time, so slow is the change, that man is unaware such changes are going on. He knows that the mountains of Scandinavia are rising out of the Baltic at the rate of a few feet in a century; he knows that the fertile slope of Etna has been growing for thousands of years by the addition of lava streams and parasitic volcanos; he knows that the delta of the Mississippi acc.u.mulates hundreds of miles of vegetable matter every generation; he knows that the of Europe are yielding to the sea; but all these appear to him minute items, not worth summing; infinitesimal quant.i.ties, which he cannot integrate. And so, in truth, they are, for him. His ephemeral existence does not allow him to form a just conception, in any ordinary state of mind, of the effects of this constant agency of change, working through countless thousands of years. But Time, inexhausted and unremitting, sums the series, integrates the formula of change; and thus, with sure though noiseless progress, from one geological epoch to another.

30. And in the meanwhile, to complete the view thus taken by the uniformitarian of the geological history of the earth, by some constant but inscrutable law, creative agency is perpetually at work, to introduce, into this progressive system of things, new species of vegetable and animal life. Organic forms, ever and ever new ones, are brought into being, and left, visible footsteps, as it were, of the progress which Time has made;–marks placed between the rocky leaves of the book of creation; by which man, when his time comes, may turn back and read the past history of his habitation. But the point for us to remark is, the immeasurable, the inconceivable length of time, if any length of time could be inconceivable, which is required of our thoughts, by this new a.s.sumption of the constant production of new species, as a law of creation. We might feel ourselves well nigh overwhelmed, when, by looking at processes which we see producing only a few feet of height or breadth or depth during the life of man, we are called upon to imagine the construction of Alps and Andes,–when we have to imagine a world made a few inches in a century. But there, at least, we had _something_ to start from: the element of change was small, but there _was_ an element of change: we had to expand, but we had not to originate. But in conceiving that all the myriads of successive species, which we find in the earth’s strata, have come into being by a law which is now operating, we have _nothing_ to start from. We have seen, and know of, no such change; all sober and skilful naturalists reject it, as a fact not belonging to our time. We have here to build a theory without materials;–to sum a series of which every term, so far as we know, is nothing;–to introduce into our scientific reasonings an a.s.sumption contrary to all scientific knowledge.

31. This appears to me to be the real character of the a.s.sumption of the constant creation of new species. But, as I have said, it is not my business here, to p.r.o.nounce upon the value or truth of this a.s.sumption.

The only use which I wish to make of it is this:–If any persons, who have adopted the geological view which I have just been explaining, should feel any interest in the speculations here offered to their notice, they must needs be (as I have no doubt they will be) even more willing than other geologists, to grant to our argument a scale of time for geological succession, corresponding in magnitude to the scale of distances which astronomy teaches us, as those which measure the relation of the universe to the earth.

This being supposed to be granted, I am prepared to proceed with my argument.



1. I have endeavored to explain that, according to the discoveries of geologists, the of which the surface of the earth is composed, exhibit indisputable evidence that, at different successive periods, the land and the waters which occupy it, have been inhabited by successive races of plants and animals; which, when taken in large groups, according to the ascending or descending order of the strata, consist of species different from those above and below them. Many of these groups of species are of forms so different from any living things which now exist, as to give to the life of those ancient periods an aspect strangely diverse from that which life now displays, and to transfer us, in thought, to a creation remote in its predominant forms from that among which we live. I have shown also, that the life and successive generations of these groups of species, and the events by which the rocks which contain these remains have been brought into their present situation and condition, must have occupied immense intervals of time;–intervals so large that they deserve to be compared, in their numerical expression, with the intervals of s.p.a.ce which separate the planets and stars from each other. It has been seen, also, that the best geologists and natural historians have not been able to devise any hypothesis to account for the successive introduction of these new species into the earth’s population; except the exercise of a series of acts of creation, by which they have been brought into being; either in groups at once, or in a perpetual succession of one or a few species, which the course of long intervals of time might acc.u.mulate into groups of species. It is true, that some speculators have held that by the agency of natural causes, such as operate upon organic forms, one species might be trans.m.u.ted into another; external conditions of climate, food, and the like, being supposed to conspire with internal impulses and tendencies, so as to produce this effect. This supposition is, however, on a more exact examination of the laws of animal life, found to be dest.i.tute of proof; and the doctrine of the successive creation of species remains firmly established among geologists. That the _extinction_ of species, and of groups of species, may be accounted for by natural causes, is a proposition much more plausible, and to a certain extent, probable; for we have good reason to believe that, even within the time of human history, some few species have ceased to exist upon the earth. But whether the extinction of such vast groups of species as the ancient strata present to our notice, can be accounted for in this way, at least without a.s.suming the occurrence of great catastrophes, which must for a time, have destroyed all forms of life in the district in which they occurred, appears to be more doubtful. The decision of these questions, however, is not essential to our purpose.

What is important is, that immense numbers of tribes of animals have tenanted the earth for countless ages, before the present state of things began to be.

2. The present state of things is that to which the existence and the history of MAN belong; and the remark which I now have to make is, that the existence and the history of Man are facts of an entirely different order from any which existed in any of the previous states of the earth; and that this history has occupied a series of years which, compared with geological periods, may be regarded as very brief and limited.

3. The remains of man are nowhere found in the strata which contain the records of former states of the earth. Skeletons of vast varieties of creatures have been disinterred from their rocky tombs; but these cemeteries of nature supply no portion of a human skeleton. In earlier periods of natural science, when comparative anatomy was as yet very imperfectly understood, no doubt, many fossil bones were supposed to be human bones. The remains of giants and of antediluvians were frequent in museums. But a further knowledge of anatomy has made it appear that such bones all belong to animals, of one kind or another; often, to animals utterly different, in their form and skeleton, from man. Also some bones, really human, have been found petrified in situations in which petrification has gone on in recent times, and is still going on. Human skeletons, imbedded in rocks by this process, have been found in the island of Guadaloupe, and elsewhere. But this phenomenon is easily distinguishable from the petrified bones of other animals, which are found in rocks belonging to really geological periods; and does not at all obliterate the distinction between the geological and the historical periods.

4. Indeed not bones only, but objects of art, produced by human workmanship, are found fossilized and petrified by the like processes; and these, of course, belong to the historical period. Human bones, and human works, are found in such deposits as, sand-banks, lava-streams, mounds of volcanic ashes; and many of them may be of unknown, and, compared with the duration of a few generations, of very great antiquity; but such deposits are distinguishable, generally without difficulty, from the strata in which the geologist reads the records of former creations. It has been truly said, that the geologist is an _Antiquary_; for, like the antiquary, he traces a past condition of things in the remains and effects of it which still subsist; but it has also been truly said, at the same time, that he is an antiquary _of a new Order_; for the remains which he studies are those which ill.u.s.trate the history of the earth, not of man. The geologist’s antiquity is not that of ornaments and arms, utensils and habiliments, walls and mounds; but of species and of genera, of seas and of mountains. It is true, that the geologist may have to study the works of man, in order to trace the effects of causes which produce the results which he investigates; as when he examines the pholad-pierced pillars of Pateoli, to prove the rise and the fall of the ground on which they stand; or notes the anchoring-rings in the wall of some Roman edifice, once a maritime fort, but now a ruin remote from the sea; or when he remarks the streets in the towns of Scania, which are now below the level of the Baltic,[1] and therefore show that the land has sunk since these pavements were laid. But in studying such objects, the geologist considers the hand of man as only one among many agencies. Man is to him only one of the natural causes of change.

5. And if, with the ill.u.s.trious author to whom we have just referred,[2]

we liken the fossil remains, by which the geologist determines the age of his strata, to the Medals and Coins in which the antiquary finds the record of reigns and dynasties; we must still recollect that a _Coin_ really discloses a vast body of characteristics of man, to which there is nothing approaching in the previous condition of the world. For how much does a Coin or Medal indicate? Property; exchange; government; a standard of value; the arts of mining, a.s.saying, coining, drawing, and sculpture; language, writing, and reckoning; historical recollections, and the wish to be remembered by future ages. All this is involved in that small human work, a Coin. If the fossil remains of animals may (as has been said) be termed Medals struck by Nature to record the epochs of her history; Medals must be said to be, not merely, like fossil remains, records of material things; they are the records of thought, purpose, society, long continued, long improved, supplied with multiplied aids and helps; they are the permanent results, in a minute compa.s.s, of a vast progress, extending through all the ramifications of human life.

6. Not a coin merely, but any, the rudest work of human art, carries us far beyond the domain of mere animal life. There is no transition from man to animals. No doubt, there are races of men very degraded, barbarous, and brutish. No doubt there are kinds of animals which are very intelligent and sagacious; and some which are exceedingly disposed to and adapted to companionship with man. But by elevating the intelligence of the brute, we do not make it become the intelligence of the man. By making man barbarous, we do not make him cease to be a man.

Animals have their especial capacities, which may be carried very far, and may approach near to human sagacity, or may even go beyond it; but the capacity of man is of a different kind. It is a capacity, not for becoming sagacious, but for becoming rational; or rather it is a capacity which he has in virtue of being rational. It is a capacity of progress. In animals, however sagacious, however well trained, the progress in skill and knowledge is limited, and very narrowly limited.

The creature soon reaches a boundary, beyond which it cannot pa.s.s; and even if the acquired habits be transmitted by descent to another generation, (which happens in the case of dogs and several other animals,) still the race soon comes to a stand in its accomplishments.

But in man, the possible progress from generation to generation, in intelligence and knowledge, and we may also say, in power, is indefinite; or if this be doubted, it is at least so vast, that compared with animals, his capacity is infinite. And this capacity extends to all races of men its characterizing efficacy: for we have good reason to believe that there is no race of human beings who may not, by a due course of culture, continued through generations, be brought into a community of intelligence and power with the most intelligent and the most powerful races. This seems to be well established, for instance, with regard to the African negroes; so long regarded by most, by some probably regarded still, as a race inferior to Europeans. It has been found that they are abundantly capable of taking a share in the arts, literature, morality and religion of European peoples. And we cannot doubt that, in the same manner, the native Australians, or the Bushmen of the Cape of Good Hope, have human faculties and human capacities; however difficult it might be to unfold these, in one or two generations, into a form of intelligence and civilization in any considerable degree resembling our own.

7. It is not requisite for us, and it might lead to unnecessary difficulties, to fix upon any one attribute of man, as peculiarly characteristic, and distinguishing him from brutes. Yet it would not be too much to say that man is, in truth, universally and specifically characterized by the possession of _Language_. It will not be questioned that language, in its highest forms, is a wonderful vehicle and a striking evidence of the intelligence of man. His bodily organs can, by a few scarcely perceptible motions, shape the air into sounds which express the kinds, properties, actions and relations of things, under thousands of aspects, in forms infinitely more general and recondite than those in which they present themselves to his senses;–and he can, by means of these forms, aided by the use of his senses, explore the boundless regions of s.p.a.ce, the far recesses of past time, the order of nature, the working of the Author of nature. This man does, by the exercise of his Reason, and by the use of Language, a necessary implement of his Reason for such purposes.

8. That language, in such a stage, is a special character of man, will not be doubted. But it may be thought, there is little resemblance between Language in this exalted degree of perfection, and the seemingly senseless gibberish of the most barbarous tribes. Such an opinion, however, might easily be carried too far. All human language has in it the elements of indefinite intellectual activity, and the germs of indefinite development. Even the rudest kind of speech, used by savages, denotes objects by their kinds, their attributes, their relations, with a degree of generality derived from the intellect, not from the senses.

The generality may be very limited; the relations which the human intellect is capable of apprehending may be imperfectly conveyed. But to denote kinds and attributes and actions and relations _at all_, is a beginning of generalization and abstraction;–or rather, is far more than a beginning. It is the work of a faculty which can generalize and abstract; and these mental processes once begun, the field of progress which is open to them is indefinite. Undoubtedly it may happen that weak and barbarous tribes are, for many generations, so hard pressed by circ.u.mstances, and their faculties so entirely absorbed in providing for the bare wants of the poorest life, that their thoughts may never travel to anything beyond these, and their language may not be extended so as to be applicable to any other purposes. But this is not the standard condition of mankind. It is not, by such cases, that man, or that human nature, is to be judged. The normal condition of man is one of an advance beyond the mere means of subsistence, to the arts of life, and the exercise of thought in a general form. To some extent, such an advance has taken place in almost every region of the earth and in every age.

9. Perhaps we may often have a tendency to think more meanly than they deserve, of so-called barbarous tribes, and of those whose intellectual habits differ much from our own. We may be to regard ourselves as standing at the summit of civilization; and all other nations and ages, as not only occupying inferior positions, but positions on a slope which descends till it sinks into the nature of brutes. And yet how little does an examination of the history of mankind justify this view! The different stages of civilization, and of intellectual culture, which have prevailed among them, have had no appearance of belonging to one single series, in which the cases differed only as higher or lower. On the contrary, there have been many very different kinds of civilization, accompanied by different forms of art and of thought; showing how universally the human mind tends to such habits, and how rich it is in the modes of manifesting its innate powers. How different have been the forms of civilization among the Chinese, the Indians, the Egyptians, the Babylonians, the Mexicans, the Peruvians! Yet in all, how much was displayed of sagacity and skill, of perseverance and progress, of mental activity and grasp, of thoughtfulness and power. Are we, in thinking of these manifestations of human capacity, to think of them as only a stage between us and brutes? or are we to think so, even of the stoical Red Indians of North America, or the energetic New Zealanders, and Caffres?

And if not, why of the African Negroes, or the Australians, or the Bushmen? We may call their Language a jargon. Very probable it would, in its present form, be unable to express a great deal of what we are in the habit of putting into language. But can we refuse to believe that, with regard to matters with which they are familiar, and on occasions where they are interested, they would be to each other intelligible and clear? And if we suppose cases in which their affections and emotions are strongly excited, (and affections and emotions at least we cannot deny them,) can we not believe that they would be eloquent and impressive? Do we not know, in fact, that almost all nations which we call savage, are, on such occasions, eloquent in their own language? And since this is so, must not their language, after all, be a wonderful instrument as well as ours? Since it can convey one man’s thoughts and emotions to many, clothed in the form which they a.s.sume in his mind; giving to things, it may be, an aspect quite different from that which they would have if presented to their own senses; guiding their conviction, warming their hearts, impelling their purposes;–can language, even in such cases, be otherwise than a wonderful produce of man’s internal, of his mental, that is, of his peculiarly _human_ faculties? And is not language, therefore, even in what we regard as its lowest forms, an endowment which completely separates man from animals which have no such faculty?–which cannot regard, or which cannot convey, the impressions of the individual in any such general and abstract form? Probably we should find, as those who have studied the language of savages always have found, that every such language contains a number of curious and subtle practices,–_contrivances_, we cannot help calling them,–for marking the relations, bearings and connections of words; contrivances quite different from those of the languages which we think of as more perfect; but yet, in the mouths of those who use such speech, answering their purpose with great precision. But without going into such details, the use of any _articulate_ language is, as the oldest Greeks spoke of it, a special and complete distinction of man as man.

10. It would be an obscure and useless labor, to speculate upon the question whether animals have among themselves anything which can properly be called _Language_. That they have anything which can be termed Language, in the sense in which we here speak of it, as admitting of general expressions, abstractions, address to numbers, eloquence, is utterly at variance with any interpretation which we can put upon their proceedings. The broad distinction of Instinct and Reason, however obscure it may be, yet seems to be most simply described, by saying, that animals do not apprehend their impressions under general forms, and that man does. Resemblance, and consequent a.s.sociation of impressions, may often show like generalization; but yet it is different. There is, in man’s mind, a germ of general thoughts, suggested by resemblances, which is evolved and fixed in language; and by the aid of such an addition to the impressions of sense, man has thousands of intellectual pathways from object to object, from effect to cause, from fact to inference. His impressions are projected on a sphere of thought of which the radii can be prolonged into the farthest regions of the universe.

Animals, on the contrary, are shut up in their sphere of sensation,–pa.s.sing from one impression to another by various a.s.sociations, established by circ.u.mstances; but still, having access to no wider intellectual region, through which lie lines of transition purely abstract and mental. That they have their modes of communicating their impressions and a.s.sociations, their affections and emotions, we know; but these modes of communication do not make a language; nor do they disturb the a.s.signment of Language as a special character of man; nor the belief that man differs in his Kind, and we may say, using a larger phrase, in his Order, from all other creatures.

11. We may sometimes be led to a.s.sign much of the development of man’s peculiar powers, to the influence of external circ.u.mstances. And that the development of those powers is so influenced, we cannot doubt; but their development only, not their existence. We have already said that savages, living a precarious and miserable life, occupied incessantly with providing for their mere bodily wants, are not likely to possess language, or any other characteristic of humanity, in any but a stunted and imperfect form. But, that manhood is debased and degraded under such adverse conditions, does not make man cease to be man. Even from such an abject race, if a child be taken and brought up among the comforts and means of development which civilized life supplies, he does not fail to show that he possesses, perhaps in an eminent degree, the powers which specially belong to man. The evidences of human tendencies, human thoughts, human capacities, human affections and sympathies, appear conspicuously, in cases in which there has been no time for external circ.u.mstances to operate in any great degree, so as to unfold any difference between the man and the brute; or in which the influence of the most general of external agencies, the impressions of several of the senses, have been intercepted. Who that sees a lively child, looking with eager and curious eyes at every object, uttering cries that express every variety of elementary human emotion in the most vivacious manner, exchanging looks and gestures, and inarticulate sounds, with his nurse, can doubt that already he possesses the germs of human feeling, thought and knowledge? that already, before he can form or understand a single articulate word, he has within him the materials of an infinite exuberance of utterance, and an impulse to find the language into which such utterance is to be moulded by the law of his human nature? And perhaps it may have happened to others, as it has to me, to know a child who had been both deaf, dumb, and blind, from a very early age. Yet she, as years went on, disclosed a perpetually growing sympathy with the other children of the family in all their actions, with which of course she could only acquaint herself by the sense of touch. She sat, dressed, walked, as they did; even imitated them in holding a book in her hand when they read, and in kneeling when they prayed. No one could look at the change which came over her sightless countenance, when a known hand touched hers, and doubt that there was a human soul within the frame.

The human soul seemed not only to be there, but to have been fully developed; though the means by which it could receive such communications as generally const.i.tute human education, were thus cut off. And such modes of communication with her companions as had been taught her, or as she had herself invented, well bore out the belief, that her mind was the constant dwelling-place, not only of human affections, but of human thoughts. So plainly does it appear that human thought is not produced or occasioned by external circ.u.mstances only; but has a special and indestructible germ in human nature.

12. I have been endeavoring to ill.u.s.trate the doctrine that man’s nature is different from the nature of other animals; as subsidiary to the doctrine that the Human Epoch of the earth’s history is different from all the preceding Epochs. But in truth, this subsidiary proposition is not by any means necessary to my main purpose. Even if barbarous and savage tribes, even if men under unfavorable circ.u.mstances, be little better than the brutes, still no one will doubt that the most civilized races of mankind, that man under the most favorable circ.u.mstances, is far, is, indeed, immeasurably elevated above the brutes. The history of man includes not only the history of Scythians and Barbarians, Australians and Negroes, but of ancient Greeks and of modern Europeans; and therefore there can be no doubt that the period of the Earth’s history, which includes the history of man, is very different indeed from any period which preceded that. To ill.u.s.trate the peculiarity, the elevation, the dignity, the wonderful endowments of man, we might refer to the achievements, the recorded thoughts and actions, of the most eminent among those nations;–to their arts, their poetry, their eloquence; their philosophers, their mathematicians, their astronomers; to the acts of virtue and devotion, of patriotism, generosity, obedience, truthfulness, love, which took place among them;–to their piety, their reverence for the deity, their resignation to his will, their hope of immortality. Such characteristic traits of man as man, (which all examples of intelligence, virtue, and religion, are,) might serve to show that man is, in a sense quite different from other creatures, “fearfully and wonderfully made;” but I need not go into such details. It is sufficient for my purpose to sum up the result in the expressions which I have already used; that man is an intellectual, moral, religious, and spiritual being.

13. But the existence of man upon the earth being thus an event of an order quite different from any previous part of the earth’s history, the question occurs, how long has this state of things endured? What period has elapsed since this creature, with these high powers and faculties, was placed upon the earth? How far must we go backward in time, to find the beginning of his wonderful history?–so utterly wonderful compared with anything which had previously occurred. For as to that point, we cannot feel any doubt. The wildest imagination cannot suggest that corals and madrepores, oysters and sepias, fishes and lizards, may have been rational and moral creatures; nor even those creatures which come nearer to human organization; megatheriums and mastodons, extinct deer and elephants. Undoubtedly the earth, till the existence of man, was a world of mere brute creatures. How long then has it been otherwise? How long has it been the habitation of a rational, reflective, progressive race? Can we by any evidence, geological or other, approximate to the beginning of the Human History?

14. This is a large and curious question, and one on which a precise answer may not be within our reach. But an answer not precise, an approximation, as we have suggested, may suffice for our purpose. If we can determine, in some measure, the order and scale of the period during which man has occupied the earth, the determination may serve to support the a.n.a.logy which we wish to establish.

15. The geological evidence with regard to the existence of man is altogether negative. Previous to the deposits and changes which we can trace as belonging obviously to the present state of the earth’s surface, and the operation of causes now existing, there is no vestige of the existence of man, or of his works. As was long ago observed,[3]

we do not find, among the and bones which are so abundant in the older strata, any weapons, medals, implements, structures, which speak to us of the hand of man, the workman. If we look forwards ten or twenty thousand years, and suppose the existing works of man to have been, by that time, ruined and covered up by of rubbish, inundations,, lava-streams, earthquakes; still, when the future inhabitant of the earth digs into and explores these coverings, he will discover innumerable monuments that man existed so long ago. The materials of many of his works, and the traces of his own mind, which he stamps upon them, are as indestructible as the and bones which give language to the oldest work. Indeed, in many cases the oldest fossil remains are the results of objects of seemingly the most frail and perishable material;–of the most delicate and tender animal and vegetable tissues and filaments. That no such remains of textures and forms, moulded by the hand of man, are anywhere found among these, must be accepted as indisputable evidence that man did not exist, so as to be contemporary with the plants and animals thus commemorated. According to geological evidence, the race of man is a novelty upon the earth;–something which has succeeded to all the great geological changes.

16. And in this, almost all geologists are agreed. Even those who hold that, in other ways, the course of change has been uniform;–that even the introduction of man, as a new species of animal, is only an event of the same kind as myriads of like events which have occurred in the history of the earth;–still allow that the introduction of man, as a moral being, is an event entirely different from any which had taken place before; and that event is, geologically speaking, recent. The changes of which we have spoken, as studied by the geologist in connection with the works of man, the destruction of buildings on sea-coasts by the incursions of the ocean, the removal of the sh.o.r.e many miles away from ancient harbors, the overwhelming of cities by earthquakes or volcanic eruptions; however great when compared with the changes which take place in one or two generations; are minute and infinitesimal, when put in comparison with the changes by which ranges of mountains and continents have been brought into being, one after another, each of them filled with the remains of different organic creations.

17. Further than this, geology does not go on this question. She has no chronometer which can tell us when the first buildings were erected, when man first dwelt in cities, first used implements or arms; still less, language and reflection. Geology is compelled to give over the question to History. The external evidences of the antiquity of the species fail us, and we must have recourse to the internal. Nature can tell us so little of the age of man, that we must inquire what he can tell us himself.

18. What man can tell us of his own age–what history can say of the beginning of history–is necessarily very obscure and imperfect. We know how difficult it is to trace to its origin the History of any single Nation: how much more, the History of all Nations! We know that all such particular histories carry us back to periods of the migrations of tribes, confused mixtures of populations, perplexed and contradictory genealogies of races; and as we follow these further and further backwards, they become more and more obscure and uncertain; at least in the histories which remain to us of most nations. Still, the obscurity is not such as to lead us to the conviction that research is useless and unprofitable. It is an obscurity such as naturally arises from the lapse of time, and the complexity of the subject. The aspect of the world, however far we go back, is still historical and human; historical and human, in as high a degree, as it is at the present day. Men, as described in the records of the oldest times, are of the same nature, act with the same views, are governed by the same motives, as at present. At all points, we see thought, purpose, law, religion, progress. If we do not find a beginning, we find at least evidence that, in approaching the beginning, the condition of man does not, in any way, cease to be that of an intellectual, moral, and religious creature.

19. There are, indeed, some histories which speak to us of the beginning of man’s existence upon earth; and one such history in particular, which comes to us recommended by indisputable evidence of its own great antiquity, by numerous and striking confirmations from other histories, and from facts still current, and by its connection with that religious view of man’s condition, which appears to thoughtful men to be absolutely requisite to give a meaning and purpose to man’s faculties and endowments. I speak, of course, of the Hebrew Scriptures. This history professes to inform us how man was placed upon the earth; and how, from one centre, the human family spread itself in various branches into all parts of the world. This genealogy of the human race is accompanied by a chronology, from which it results that the antiquity of the human race does not exceed a few thousand years. Even if we accept this history as true and authoritative, it would not be wise to be rigidly tenacious of the chronology, as to its minute exactness. For, in the first place, of three different forms in which this history appears, the chronology is different in all the three: I mean the Hebrew, the Samaritan, and the Septuagint versions of the Old Testament. And even if this were not so, since this chronology is put in the form of genealogies, of which many of the steps may very probably have a meaning different from the simple succession of generations in a family, (as some of them certainly have,) it would be unwise to consider ourselves bound to the exact number of years stated, in any of the three versions, or even in all. It makes no difference to our argument, nor to any, purpose in which we can suppose this narrative to have a bearing, whether we accept six thousand or ten thousand years, or even a longer period, as the interval which has now elapsed since the creation of man took place, and the peopling of the earth began.

20. And, in our speculations at least, it will be well for us to take into account the view which is given us of the antiquity of the human race, by other histories as well as by this. A satisfactory result of such an investigation would be attained if, looking at all these histories, weighing their value, interpreting their expressions fairly, discovering their sources of error, and of misrepresentation, we should find them all converge to one point; all give a consistent and harmonious view of the earliest stages of man’s history; of the times and places in which he first appeared as man. If all nations of men are branches of the same family, it cannot but interest us, to find all the family traditions tending upwards towards the same quarter; indicating a divergence from the same point; exhibiting a recollection of the original domicile, or of the same original family circle.

21. To a certain extent at least, this appears to be the result of the historical investigations which have been pursued relative to this subject. A certain group of nations is brought before us by these researches which, a few thousands of years ago, were possessed of arts, and manners, and habits, and belief, which make them conspicuous, and which we can easily believe to have been contemporaneous successors of a common, though, it may be even then, remote stock. Such are the Jews, Egyptians, Chaldeans, and a.s.syrians. The histories of these nations are connected with and confirm each other. Their languages, or most of them, have certain affinities, which glossologists, on independent grounds, have regarded as affinities implying an original connection. Their chronologies, though in many respects discrepant, are not incapable of being reduced into an harmony by very probable suppositions. Here we have a very early view of the condition of a portion of the earth as the habitation of man, and perhaps a suggestion of a condition earlier still.

22. It is true, that there are other nations also, which claim an antiquity for their civilization equal to or greater than that which we can ascribe to these. Such are the Indians and the Chinese. But while we do not question that these nations were at a remote period in possession of arts, knowledge, and regular polity, in a very eminent degree, we are not at all called upon to a.s.sent to the immense numbers, tens of thousands and hundreds of thousands of years, by which such nations, in their histories, express their antiquity. For, in the first place, such numbers are easily devised and transferred to the obscure early stages of tradition, when the art of numeration is once become familiar. These vast intervals, applied to series of blank genealogies, or idle fables, gratify the popular appet.i.te for numerical wonders, but have little claim on critical conviction.

23. And in the next place, we discover that not enumeration only, but a more recondite art, had a great share in the fabrication of these gigantic numbers of years. Some of the nations of whom we have thus spoken, the Indians, for example, had, at an early period, possessed themselves of a large share of astronomical knowledge. They had observed and examined the motions of the Sun, the Moon, the Planets, and the Stars, till they had discovered Cycles, in which, after long and seemingly irregular wanderings in the skies, the heavenly bodies came round again to known and regular positions. They had thus detected the order that reigns in the seeming disorder; and had, by this means, enabled themselves to know beforehand when certain astronomical events would occur; certain configurations of the Planets, for instance, and eclipses; and knowing how such events would occur in future, they were also able to calculate how the like events had occurred in the past.

They could thus determine what eclipses and what planetary configurations had occurred, in thousands and tens of thousands of years of past time; and could, if they were disposed to falsify their early histories, and to confirm the falsification by astronomical evidence, do so with a very near approximation to astronomical truth. Such astronomical confirmation of their a.s.sertions, so incapable in any common apprehension of being derived from any other source than actual observation of the fact, naturally produced a great effect upon common minds; and still more, on those who examined the astronomical fact, enough only to see that it was, approximately, at least, true. But in recent times the fallacy of this evidence has been shown, and the fabrication detected. For though the astronomical rules which they had devised were approximately true, they were true approximately only. The more exact researches of modern European astronomy discovered that their cycles, though nearly exact, were not quite so. There was in them an error which made the cycle, at every revolution of its period, when it was applied to past ages, more and more wrong; so that the astronomical events which they a.s.serted to have happened, as they had calculated that they would have happened, the better informed astronomer of our day knows would not have happened exactly so, but in a manner differing more and more from their statement, as the event was more and more remote.

And thus the fact which they a.s.serted to have been observed, had not really happened; and the confirmation, which it had been supposed to lend to their history, disappeared. And thus, there is not, in the a.s.serted antiquity of Indian civilization and Indian astronomy, anything which has a well-founded claim to disturb our belief that the nations of the more western regions of Asia had a civilization as ancient as theirs. And considerations of nearly the same kind may be applied to the very remote astronomical facts which are recorded as having been observed in the history of some others of the ancient nations above mentioned.

24. Still less need we be disturbed by the long series of dynasties, each occupying a large period of years, which the Egyptians are said to have inserted in their early history, so as to carry their origin beyond the earliest times which I have mentioned. If they spoke of the Greek nations as children compared with their own long-continued age, as Plato says they did, a few thousands of years of previous existence would well ent.i.tle them to do so. So far as such a period goes, their monuments and their hieroglyphical inscriptions give a reality to their pretensions, which we may very willingly grant. And even the history of the Jews supposes that the Egyptians had attained a high point in arts, government, knowledge, when Abraham, the father of the Jewish nation, was still leading the life of a nomad. But this supposition is not inconsistent with the account which the Jewish Scriptures give, of the origin of nations; especially if, as we have said, we abstain from any rigid and narrow interpretation of the chronology of those scriptures; as on every ground, it is prudent to do.

25. It appears then not unreasonable to believe, that a very few thousands, or even a few hundreds of years before the time of Abraham, the nations of central and western Asia offer to us the oldest aspect of the life of man upon the earth; and that in reasoning concerning the antiquity of the human race, we may suppose that at that period, he was in the earliest stages of his existence. Although, in truth, if we were to accept the antiquity claimed by the Egyptians, the Indians, or the Chinese, the nature of our argument would not be materially altered; for ten thousand, or even twenty thousand years, bears a very small proportion to the periods of time which geology requires for the revolutions which she describes; and, as I have said, we have geological evidence also, to show how brief the human period has been, when compared with the period which preceded the existence of man. And if this be so; if such peoples as those who have left to us the monuments of Egypt and of a.s.syria, the pyramids and ancient Thebes, the walls of Nineveh and Babylon, were the first nations which lived as nations; or if they were separated from such only by the interval by which the Germans of to-day are separated from the Germans of Tacitus; we may well repeat our remark, that the history of man, in the earliest times, is as truly a history of a wonderful, intellectual, social, political, spiritual creature, as it is at present. We see, in the monuments of those periods, evidences so great and so full of skill, that even now, they amaze us, of arts, government, property, thought, the love of beauty, the recognition of deity; evidences of memory, foresight, power.

If London or Berlin were now destroyed, overwhelmed, and, four thousand years hence, disinterred, these cities would not afford stronger testimony of those attributes, as existing in modern Europeans, than we have of such qualities in the ancient Babylonians and Egyptians. The history of man, as that of a creature pre-eminent in the creation, is equally such, however far back we carry our researches.

26. Nor is there anything to disturb this view, in the fact of the existence of the uncultured and barbarous tribes which occupy, and always have occupied, a large portion of the earth’s surface. For, in the first place, there is not, in the aspect of the fact, or in the information which history gives us, any reason to believe that such tribes exhibit a form of human existence, which, in the natural order of progress, is earlier than the forms of civilized life, of which we have spoken. The opinion that the most savage kind of human life, least acquainted with arts, and least provided with resources, is the state of nature out of which civilized life has everywhere gradually emerged, is an opinion which, though at one time popular, is unsupported by proof, and contrary to probability.[4] Savage tribes do not so grow into civilization; their condition is, far more probably, a condition of civilization degraded and lost, than of civilization incipient and prospective. Add to this, that if we were to a.s.sume that this were otherwise; if man thus originally and naturally savage, did also naturally tend to become civilized; this _tendency_ is an endowment no less wonderful, than those endowments which civilization exhibits. The capacity is as extraordinary as the developed result; for the capacity involves the result. If savage man be the germ of the most highly civilized man, he differs from all other animal germs, as man differs from brute. And add to this again, that in the tribes which we call savage, and whose condition most differs, in external circ.u.mstances, from ours, there are, after all, a vast ma.s.s of human attributes: thought, purpose, language, family relations; generally property, law, government, contract, arts, and knowledge, to no small extent; and in almost every case, religion. Even uncivilized man is an intellectual, moral, social, religious creature; nor is there, in his condition, any reason why he may not be a spiritual creature, in the highest sense in which the most civilized man can be so.

27. Here then we are brought to the view which, it would seem, offers a complete reply to the difficulty, which astronomical discoveries appeared to place in the way of religion:–the difficulty of the opinion that man, occupying this speck of earth, which is but as an atom in the Universe, surrounded by millions of other globes, larger, and, to appearance, n.o.bler than that which he inhabits, should be the object of the peculiar care and guardianship, of the favor and government, of the Creator of All, in the way in which Religion teaches us that He is. For we find that man, (the human race, from its first origin till now,) has occupied but an atom of time, as he has occupied but an atom of s.p.a.ce:–that as he is surrounded by myriads of globes which may, like this, be the habitations of living things, so he has been preceded, on this earth, by myriads of generations of living things, not possibly or probably only, but certainly; and yet that, comparing his history with theirs, he has been, certainly has been fitted to be, the object of the care and guardianship, of the favor and government, of the Master and Governor of All, in a manner entirely different from anything which it is possible to believe with regard to the countless generations of brute creatures which had gone before him. If we will doubt or overlook the difference between man and brutes, the difficulty of ascribing to man peculiar privileges, is made as great by the revelations of geology, as of astronomy. The scale of man’s insignificance is, as we have said, of the same order in reference to time, as to s.p.a.ce. There is nothing which at all goes beyond the magnitude which observation and reasoning suggest for geological periods, in supposing that the tertiary strata occupied, in their deposition and elevation, a period as much greater than the period of human history, as the solar system is larger than the earth:–that the secondary strata were as much longer than these in their formation, as the nearest fixed star is more distant than the sun:–that the still earlier, call them primary, or protozoic, or what we will, did, in their production, extend through a period of time as vast, compared with the secondary period, as the most distant nebula is remoter than the nearest star. If the earth, as the habitation of man, is a speck in the midst of an infinity of s.p.a.ce, the earth, as the habitation of man, is also a speck at the end of an infinity of time. If we are as nothing in the surrounding universe, we are as nothing in the elapsed eternity; or rather, in the elapsed organic antiquity, during which the earth has existed and been the abode of life. If man is but one small family in the midst of innumerable possible households, he is also but one small family, the successor of innumerable tribes of animals, not possible only, but actual. If the planets _may_ be the seats of life, we know that the seas which have given birth to our mountains _were_ the seats of life. If the stars may have hundreds of systems of tenanted planets rolling round them, we know that the secondary group of rocks does contain hundreds of tenanted beds, witnessing of as many systems of organic creation. If the nebulae may be planetary systems in the course of formation, we know that the primary and transition rocks either show us the earth in the course of formation, as the future seat of life, or exhibit such life as already begun.

28. How far that which astronomy thus a.s.serts as possible, is probable:–what is the value of these possibilities of life in distant regions of the universe, we shall hereafter consider. But in what geology a.s.serts, the case is clear. It is no possibility, but a certainty. No one will now doubt that and skeletons, trunks and leaves, prove animal and vegetable life to have existed. Even, therefore, if Astronomy could demonstrate all that her most fanciful disciples a.s.sume, Geology would still have a complete right to claim an equal hearing;–to insist upon having her a.n.a.logies regarded. She would have a right to answer the questions of Astronomy, when she says, How can we believe this? and to have her answers accepted.

The Plurality of Worlds Part 5

If you are looking for The Plurality of Worlds Part 5 you are coming to the right place.
The Plurality of Worlds is a Webnovel created by Edward Hitchcock and William Whewell.
This lightnovel is currently completed.

19. This would be so, we say, if the luminous matter moved in a greatly resisting medium. But what is the measure of _great_ resistance? It is, as we have already said, that the resistance which opposes the motion shall bear a considerable proportion to the force which deflects the motion. But what is that force? Upon the theory of the universal gravitation of matter, on which theory we here proceed, the force which deflects the motions of the parts of each system into curves, is the mutual attraction of the parts of the system; leaving out of the account the action of other systems, as comparatively insignificant and insensible. The condition, then, for the production of such spiral figures as I have spoken of, amounts really to this; that the mutual attraction of the parts of the luminous matter is slight; or, in other words, that the matter itself is very thin and rare. In that case, indeed, we can easily see that such a result would follow. A cloud of dust, or of smoke, which was thin and light, would make but a little way through the air, and would soon fall downwards; while a metal bullet shot horizontally with the same velocity, might fly for miles. Just so, a loose and vaporous ma.s.s of cometic matter would be pulled rapidly inwards by the attraction to the centre; and supposing it also drawn into a long train, by the different density of its different parts, it would trace, in lines of light, a circular or elliptical spiral converging to the centre of attraction, and resembling one of the branches of the spiral nebulae. And if several such cometic thus travelled towards the centre, they would exhibit the wheel-like figure with bent spokes, which is seen in the spiral nebulae. And such a figure would all the more resemble some of these nebulae, as seen through Lord Rosse’s telescope, if the spirals were accompanied by exterior branches of thinner and fainter light, which nebulous matter of smaller density might naturally form. Perhaps too, such matter, when thin, may be supposed to cool down more rapidly from its state of incandescence; and thus to become less luminous. If this were so, a great optical power would of course be required, to make the diverging branches visible at all.

20. There is one additional remark, which we may make, as to the resemblance of cometary[9] and nebular matter. That cometary matter is of very small density, we have many reasons to believe:–its transparency, which allows us to see stars through it undimmed;–the absence of any mechanical effect, weight, inertia, impulse, or attraction, in the nearest appulses of comets to planets and satellites:–and the fact that, in the recent remarkable event in the cometic history, the separation of Biela’s comet into two, the two parts did not appear to exert any perceptible attraction on each other, any more than two volumes of dust or of smoke would do on earth. Luminous cometary matter, then, is very light, that is, has very little weight or inertia. And luminous nebulous matter is also very light in this sense: if our account of the cause of spiral nebulae has in it any truth. But yet, if we suppose the nebulae to be governed by the law of universal gravitation, the attractive force of the luminous matter upon itself, must be sufficient to bend the spirals into their forms. How are we to reconcile this; that the matter is so loose that it falls to the centre in rapid spirals, and yet that it attracts so strongly that there is a centre, and an energetic central force to curve the spirals thither? To this, the reply which we must make is, that the size of the nebular s.p.a.ce is such, that though its rarity is extreme, its whole ma.s.s is considerable. One part does not perceptibly attract another, but the whole does perceptibly attract every part. This indeed need the less surprise us, since it is exactly the case with our earth. One stone does not visibly attract another. It is much indeed for man, if he can make perceptible the attraction of a mountain upon a plumb-line; or of a stratum of rock a thousand feet thick upon the going of a pendulum; or of large of metal upon a delicate balance. By such experiments men of science have endeavored to measure that minute thing, the attraction of one portion of terrestrial matter upon another; and thus, to weigh the whole ma.s.s of the earth. And equally great, at least, may be the disproportion between the mutual attraction of two parts of a nebulous system, and the total central attraction; and thus, though the former be insensible, the latter may be important.

21. It has been shown by Newton, that if any ma.s.s of matter be distributed in a uniform sphere, or in uniform concentric spherical, the total attraction on a point without the sphere, will be the same as if the whole ma.s.s were collected in that single point, the centre. Now, proceeding upon the supposition of such a distribution of the matter in a nebula, (which is a reasonable average supposition,) we may say, that if our sun were expanded into a nebula reaching to the extreme bounds of the known solar system, namely, to the newly-discovered planet Neptune, or even hundreds of times further; the attraction on an external point would remain the same as it is, while the attraction on points within the sphere of diffusion would be less than it is; according to some law, depending upon the degree of condensation of the nebular matter towards the centre; but still, in the outer regions of the nebula, not differing much from the present solar attraction. If we could discover a ma.s.s of luminous matter, descending in a spiral course towards the centre of such a nebula, that is, towards the sun, we should have a sort of element of the spiral nebulae which have now attracted so much of the attention of astronomers. But, by an extraordinary coincidence, recent discoveries have presented to us such an element. Encke’s comet, of which we have just spoken, appears to be describing such a spiral curve towards the sun. It is found that its period is, at every revolution, shorter and shorter; the amplitude of its sweep, at every return within the limits of our observation, narrower and narrower; so that in the course of revolutions and ages, however numerous, still, not such as to shake the evidence of the fact, it will fall into the sun.

22. Here then we are irresistibly driven to calculate what degree of resemblance there is, between the comet of Encke, and the luminous elements of the spiral nebulae, which have recently been found to exist in other regions of the universe. Can we compare its density with theirs? Can we learn whether the luminous matter in such nebulae is more diffused or less diffused, than that of the comet of Encke? Can we compare the mechanical power of getting through s.p.a.ce, as we may call it, that is, the ratio of the inertia to the resistance, in the one case, and in the other? If we can, the comparison cannot fail, it would seem, to be very curious and instructive. In this comparison, as in most others to which cosmical relations conduct us, we must expect that the numbers to which we are led, will be of very considerable amount. It is not equality in the density of the two luminous which we are to expect to find; if we can mark their proportions by thousands of times, we shall have made no small progress in such speculations.

23. The comet of Encke describes a spiral, gradually converging to the sun; but at what rate converging? In how many revolutions will it reach the sun? Of how many folds will its spire consist, before it attains the end of its course? The answer is:–Of very many. The r.e.t.a.r.dation of Encke’s Comet is very small: so small, that it has tasked the highest powers of modern calculation to detect it. Still, however, it is there: detected, and generally acknowledged, and confirmed by every revolution of the comet, which brings it under our notice; that is, commonly, about every three years. And having this fact, we must make what we can of it, in reasoning on the condition of the universe. No accuracy of calculation is necessary for our purpose: it is enough, if we bring into view the kind of scale of numbers to which calculation would lead us.

24. Encke’s comet revolves round the sun in 1,211 days. The period diminishes at present, by about one-ninth of a day every revolution.

This amount of diminution will change, as the orbit narrows; but for our purpose, it will be enough to consider it unchangeable. The orbit therefore will cease to exist in a number of periods expressed by 9 times 1,211; that is, in something more that 10,000 revolutions; and of course sooner than this, in consequence of its coming in contact with the body of the sun. In 30,000 years then, it may be, this comet will complete its spiral, and be absorbed by the central ma.s.s. This long time, this long series of ten thousand revolutions, are long, because the resistance is so small, compared with the inertia of the moving ma.s.s. However thin, and rare, and unsubstantial the comet may be, the medium which resists it is much more so.

25. But this spiral, converging to its pole so slowly that it reaches it only after 10,000 circuits, is very different indeed from the spirals which we see in the nebulae of which we have spoken. In the most conspicuous of those, there are only at most three or four circular or oval sweeps, in each spiral, or even the spiral reaches the centre before it has completed a single revolution round it. Now, what are we to infer from this? How is it, that the comet has a spiral of so many revolutions, and the nebulae of so few? What difference of the mechanical conditions is indicated by this striking difference of form? Why, while the Comet thus lingers longer in the outer s.p.a.ce, and approaches the sun by almost imperceptible degrees, does the Nebular Element rush, as it were, headlong to its centre, and show itself unable to circulate even for a few revolutions?

26. Regarding the question as a mechanical problem, the answer must be this:–It is so, because the nebula is so much more rare than the matter of the comet, or the resisting medium so much more dense; or combining the two suppositions, because in the case of the comet, the luminous matter has _much_ more inertia, more mechanical reality and substance, than the medium through which it moves; but in the nebula very _little_ more.

27. The numbers of revolutions of the spiral, in the two cases, may not exactly represent the difference of the proportions; but, as I have said, they may serve to show the scale of them; and thus we may say, that if Encke’s comet, approaching the centre by 10,000 revolutions, is 100,000 times as dense as the surrounding medium, the elements of the nebula, which reach the centre in a single revolution, are only ten times as dense as the medium through which they have to move.[10]

28. Nor does this result (that the bright element of the nebulae is so few times denser than the medium in which it moves) offer anything which need surprise us: for, in truth, in a diffused nebula, since we suppose that its parts have mechanical properties, the nebula itself is a resisting medium. The rarer parts, which may very naturally have cooled down in consequence of their rarity, and so, become non-luminous, will resist the motions of the more dense and still-luminous portions. If we recur to the supposition, which we lately made, that the Sun were expanded into a nebulous sphere, reaching the orbit of Neptune, the diffused matter would offer a far greater resistance to the motions of comets than they now experience. In that case, Encke’s comet might be brought to the centre after a few revolutions; and if, while it were thus descending, it were to be drawn out into a string of luminous, as Biela’s comet has begun to be, these comets, and any others, would form separate luminous spiral tracks in the solar system; and would convert it into a spiral nebula of many branches, like those which are now the most recent objects of astronomical wonder.

29. It seems allowable to regard it as one of those coincidences, in the epochs of related yet seeming unconnected discoveries, which have so often occurred in the history of science; that we should, nearly at the same time, have had brought to our notice, the prevalence of spiral nebulae, and the circ.u.mstances, in Biela’s and in Encke’s comets, which seem to explain them: the one by showing the origin of luminous broken lines, one part drifting on faster than another, according to its different density, as is usual in incoherent;[11] and the other by showing the origin of the spiral form of those lines, arising from the motion being in a resisting medium.

30. But though I have made suppositions by which our Solar System might become a spiral nebula, undoubtedly it is at present something very different; and the leading points of difference are very important for us to consider. And the main point is, that which has already been cursorily noticed: that instead of consisting of matter all nearly of the same density, and a great deal of it luminous, our Solar System consists of kinds of matter immensely different in density, and of large and regular portions which are not luminous. Instead of a diffused nebula with vaporous comets trailing spiral tracks through a medium little rarer than themselves; we have a central sun, and the dark globes of the solid planets rolling round him, in a medium so rare, that in thousands of revolutions not a vestige of r.e.t.a.r.dation can be discovered by the most subtle and persevering researches of astronomers. In the solar system, the luminous matter is collected into the body of the sun; the non-luminous matter, into the planets. And the comets and the resisting medium, which offer a small exception to this account, bear a proportion to the rest which the power of numbers scarce suffices to express.

31. Thus with regard to the density of matter in the solar system; we have supposed, as a mode of expression, that the density of a comet, Encke’s comet for instance, is 100,000 times that of the resisting medium. Probably this is greatly understated; and probably also we greatly understate the matter, when we suppose that the tail of a comet is 100,000 times rarer than the matter of the sun.[12] And thus the resisting medium would be, at a very low calculation, 10,000 millions of times more rare than the substance of the sun.

32. And thus we are not, I think, going too far, when we say, that our Solar System, compared with spiral nebulous systems, is a system completed and finished, while they are mere confused, indiscriminate, incoherent In the Nebulae, we have loose matter of a thin and vaporous const.i.tution, differing as more or less rare, more or less luminous, in a small degree; diffused over enormous s.p.a.ces, in straggling and irregular forms; moving in devious and brief curves, with no vestige of order or system, or even of separation of different kinds of bodies. In the Solar System, we have the luminous separated from the non-luminous, the hot from the cold, the dense from the rare; and all, luminous and non-luminous, formed into globes, impressed with regular and orderly motions, which continue the same for innumerable revolutions and cycles.[13] The spiral nebulae, compared with the solar system, cannot be considered as other than a kind of chaos; and not even a chaos, in the sense of a state preceding an orderly and stable system; for there is no indication, in those objects, of any tendency towards such a system. If we were to say that they appear mere shapeless, flung off in the work of creating solar systems, we might perhaps disturb those who are resolved to find everywhere worlds like ours; but it seems difficult to suggest any other reason for not saying so.

33. The same may be said of the other very irregular nebulae, which spread out patches and paths of various degrees of brightness; and shoot out, into surrounding s.p.a.ce, faint branches which are of different form and extent, according to the optical power with which they are seen.

These irregular forms are incapable of being permanent according to the laws of mechanics. They are not figures of equilibrium; and, therefore, must change by the attraction of the matter upon itself. But if the tenuity of the matter is extreme, and the resistance of the medium in which it floats considerable, this tendency to change and to condensation may be almost nullified; and the bright specks may long keep their straggling forms, as the most fantastically shaped clouds of a summer-sky often do. It is true, it may be said that the reason why we see no change in the form of such nebulae, is that our observations have not endured long enough; all visible changes in the stars requiring an immense time, according to the gigantic scale of celestial mechanism.

But even this hypothesis (it is no more) tends to establish the extreme tenuity of the nebulae; for more solid systems, like our solar system, require, for the preservation of their form, motions which are perceptible, and indeed conspicuous, in the course of a month; namely, the motions of the planets. All, therefore, concurs to prove the extreme tenuity of the substance of irregular nebulae.

34. Nebulae which a.s.sume a regular, for instance, a circular or oval shape, with whatever variation of luminous density from the inner to the outer parts, may have a form of equilibrium, if their parts have a proper gyratory motion. Still, we see no reason for supposing that these differ so much from irregular nebulae, as to be denser bodies, kept in their forms by rapid motions. We are rather led to believe that, though perhaps denser than the spiral nebulae, they are still of extremely thin and vaporous character. It would seem very unlikely that these vast clouds of luminous vapor should be as dense as the tail of a comet; since a portion of luminous matter so small as such a tail is, must have cooled down from its most luminous condition; and must require to be more dense than nebular matter in order to be visible at all by its own light.

35. Thus we appear to have good reason to believe that nebulae are vast of incoherent or gaseous matter, of immense tenuity, diffused in forms more or less irregular, but all of them dest.i.tute of any regular system of solid moving bodies. We seem, therefore, to have made it certain that _these_ celestial objects at least are not inhabited. No speculators have been bold enough to place inhabitants in a comet; except, indeed, some persons who have imagined that such a habitation, carrying its inmates alternately into the close vicinity of the sun’s surface, and far beyond the orbit of Ura.n.u.s, and thus exposing them to the fierce extremes of heat and cold, might be the seat of penal inflictions on those who had deserved punishment by acts done in their life on one of the planets. But even to give coherence to this wild imagination, we must further suppose that the tenants of such prison-houses, though still sensible to human suffering from extreme heat and cold, have bodies of the same vaporous and unsubstantial character as the vehicle in which they are thus carried about the system; for no frame of solid structure could be sustained by the incoherent and varying volume of a comet. And probably, to people the nebulae with such thin and fiery forms, is a mode of providing them with population, that the most ardent advocates of the plurality of worlds are not prepared to adopt.

36. So far then as the Nebulae are concerned, the improbability of their being inhabited, appears to mount to the highest point that can be conceived. We may, by the indulgence of fancy, people the summer-clouds, or the beams of the aurora borealis, with living beings, of the same kind of substance as those bright appearances themselves; and in doing so, we are not making any bolder a.s.sumption than we are, when we stock the Nebulae with inhabitants, and call them in that sense, “distant worlds.”


[1] Herschel, _Outl. of Astr._ Art. 893.

[2] Herschel, _Outl. of Astr._ Art. 874, and Plate 11, Fig. 3.

[3] Ibid. Art. 897.

[4] Hersch. 874.

[5] Ibid. 881-8.

[6] At the recent meeting of the British a.s.sociation (Sept. 1853), drawings were exhibited of the same nebulae, as seen through Lord Rosse’s large telescope, and through a telescope of three feet aperture. With the smaller telescopic power, all the characteristic features were lost.

The spiral structure (see next Article but one) has been almost entirely brought to light by the large telescope.

[7] See monthly Notices of the Royal Astronomical Society, Dec. 13, 1850.

[8] The frontispiece to this volume represents two of these Spiral Nebulae; those denominated 51 Messier, and 99 Messier, as given by Lord Rosse in the _Phil. Trans. for 1850_. The former of these two has a lateral focus, besides the focus or pole.

[9] I am aware that some astronomers do not consider it as proved that cometary matter is entirely self-luminous. Arago found that the light of a Comet contained a portion of polarized light, thus proving that it had been reflected (_Cosmos_, I. p. 111, and III. p. 566). But I think the opinion that the greater part of the light is self-luminous, like the nebulae, generally prevails. Any other supposition is scarcely consistent with the rapid changes of brightness which occur in a comet during its motion to and from the Sun.

[10] We a.s.sume here that the number of revolutions to the centre is greater in proportion as the relative density of the resisting medium is less; which is by no means mechanically true; but the calculation may serve, as we have said, to show the scale of the numbers involved.

[11] Humboldt, whom nothing relative to the history of science escapes, quotes from Seneca a pa.s.sage in which mention is made of a Comet which divided into two parts; and from the Chinese Annals, a notice of three “coupled Comets,” which in the year 896 appeared, and described their paths together. _Cosmos_, III. p. 570, and the notes.

[12] Laplace has proved that the of comets are very small. He reckons their mean ma.s.s as very much less than 1-100000th of the Earth’s ma.s.s. And hence, considering their great size, we see how rare they must be. See _Expos. du Syst. du Monde_.

[13] Humboldt repeatedly expresses his conviction that our Solar System contains a greater variety of forms than other systems. (_Cosmos_, III.

373 and 587.)



1. We appear, in the last chapter, to have cleared away the supposed inhabitants of the outskirts of creation, so far as the Nebulae are the outskirts of creation. We must now approach a little nearer, in appearance at least, to our own system. We must consider the Fixed Stars; and examine any evidence which we may be able to discover, as to the probability of their containing, in themselves or in accompanying bodies, as planets, inhabitants of any kind. Any special evidence which we can discern on this subject, either way, is indeed slight. On the one side we have the a.s.serted a.n.a.logy of the parts of the universe; of which point we have spoken, and may have more to say hereafter. Each Fixed Star is conceived to be of the nature of our Sun; and therefore, like him, the centre of a planetary system. On the other side, it is extremely difficult to find any special facts relative to the nature of the fixed stars, which may enable us in any degree to judge how far they really are of a like nature with the Sun, and how far this resemblance goes. We may, however, notice a few features in the starry heavens, with which, in the absence of any stronger grounds, we may be allowed to connect our speculations on such questions. The a.s.siduous scrutiny of the stars which has been pursued by the most eminent astronomers, and the reflections which their researches have suggested to them, may have a new interest, when discussed under this point of view.

2. Next after the Nebulae, the cases which may most naturally engage our attention, are Cl.u.s.ters of stars. The cases, indeed, in which these cl.u.s.ters are the closest, and the stars the smallest, and in which, therefore, it is only by the aid of a good telescope that they are resolved into stars, do not differ from the resolvable nebulae, except in the degree of optical power which is required to resolve them. We may, therefore, it would seem, apply to such cl.u.s.ters, what we have said of resolvable nebulae: that when they are thus, by the application of telescopic power, resolved into bright points, it seems to be a very bold a.s.sumption to a.s.sume, without further proof, that these bright points are suns, distant from each other as far as we are from the nearest stars. The boldness of such an a.s.sumption appears to be felt by our wisest astronomers.[1] That several of the cl.u.s.ters which are visible, some of them appearing as if the component stars were gathered together in a nearly spherical form, are systems bound together by some special force, or some common origin, we may regard, with those astronomers, as in the highest degree probable. With respect to the stability of the form of such a system, a curious remark has been made by Sir John Herschel,[2] that if we suppose a globular s.p.a.ce filled with equal stars, uniformly dispersed through it, the particular stars might go on forever, describing ellipses about the centre of the globe, in all directions, and of all sizes; and all completing their revolutions in the same time. This follows, because, as Newton has shown, in such a case, the compound force which tends to the centre of the sphere would be everywhere proportional to the distance from the centre; and under the action of such a force, ellipses about the centre would be described, all the periods being of the same amount. This kind of symmetrical and simple systematic motion, presented by Newton as a mere exemplification of the results of his mechanical principles, is perhaps realized, approximately at least, in some of the globular cl.u.s.ters. The motions will be swift or slow, according to the total ma.s.s of the groups. If, for instance, our Sun were thus broken into fragments, so as to fill the sphere girdled by the earth’s…o…b..t, all the fragments would revolve round the centre in a year. Now, there is no symptom, in any cl.u.s.ter, of its parts moving nearly so fast as this; and therefore we have, it would seem, evidence that the groups are much less dense than would be the s.p.a.ce so filled with fragments of the sun. The slowness of the motions, in this case, as in the nebulae, is evidence of the weakness of the forces, and therefore, of the rarity of the ma.s.s; and till we have some gyratory motion discovered in these groups, we have nothing to limit our supposition of the extreme tenuity of their total substance.

3. Let us then go on to the cases in which we have proof of such gyratory motions in the stars; for such are not wanting. Fifty years ago, Herschel the father, had already ascertained that there are certain pairs of stars, very near each other (so near, indeed, that to the una.s.sisted eye they are seen as single stars only,) and which revolve about each other. These Binary Sidereal Systems have since been examined with immense diligence and profound skill by Herschel the son, and others; and the number of such binary systems has been found, by such observers, to be very considerable. The periods of their revolutions are of various lengths, from 30 or 40 years to several hundreds of years.

Some of those pairs which have the shortest periods, have already, since the nature of their movements was discovered, performed more than a complete revolution;[3] thus leaving no room for doubting that their motions are really of this gyratory kind. Not only the fact, but the law of this…o…b..tal motion, has been investigated; and the investigations, which naturally were commenced on the hypothesis that these distant bodies were governed by that Law of universal Gravitation, which prevails throughout the solar system, and so completely explains the minutest features of its motions, have ended in establishing the reality of that Law, for several Binary Systems, with as complete evidence as that which carries its operations to the orbits of Ura.n.u.s and Neptune.

4. Being able thus to discern, in distant regions of the universe, bodies revolving about each other, we have the means of determining, as we do in our own solar system, the of the bodies so revolving.

But for this purpose, we must know their distance from each other; which is, to our vision, exceedingly small, requiring, as we have said, high magnifying powers to make it visible at all. And again, to know what linear distance this small visible distance represents, we must know the distance of the stars from us, which is, for every star, as we know, immensely great; and for most, we are dest.i.tute of all means of determining how great it is. There are, however, some of these binary systems, in which astronomers conceive that they have sufficiently ascertained the value of both these elements, (the distance of the two stars from each other, and from us,) to enable them to proceed with the calculation of which I have spoken; the determination of the of the revolving bodies. In the case of the star _Alpha Centauri_, the first star in the constellation of the Centaur, the period is reckoned to be 77 years; and as, by the same calculator, the apparent semi-axis of the orbit described is stated at 15 seconds of s.p.a.ce, while the annual parallax of each star is about one second, it is evident that the orbit must have a radius about 15 times the radius of the earth’s…o…b..t; that is, an orbit greater than that of Saturn, and approaching to that of Ura.n.u.s. In the solar system, a revolution in such an orbit would occupy a time greater than that of Saturn, which is 30 years, and less than that of Ura.n.u.s, which is about 80 years: it would, in fact, be about 58 years. And since, in the binary star, the period is greater than this, namely 77 years, the attraction which holds together its two elements must be less than that which holds together the Sun and a planet at the same distance; and therefore the of the two stars together are considerably less than the ma.s.s of our sun.

5. A like conclusion is derived from another of these conspicuous double stars, namely, the one termed by astronomers _61 Cygni_; of which the annual parallax has lately been ascertained to be one-third of a second of s.p.a.ce, while the distance of the two stars is 15 seconds. Here therefore we have an orbit 45 times the size of the Earth’s…o…b..t; larger than that of the newly-discovered planet Neptune, whose orbit is 30 times as large as the earth’s, and his period nearly 165 years. The period of 61 Cygni is however, it appears, probably not short of 500 years; and hence it is calculated that the sum of the of the two stars which make up this pair is about one-third of the ma.s.s of our Sun.[4]

6. These results give some countenance to the opinion, that the quant.i.ty of luminous matter, in other systems, does not differ very considerably from the ma.s.s of our Sun. It differs in these cases as 1 to 3, or thereabouts. In what degree of condensation, however, the matter of these binary systems is, compared with that of our solar system, we have no means whatever of knowing. Each of the two stars may have its luminous matter diffused through a globe as large as the earth’s…o…b..t; and in that case, would probably not be more dense than the tail of a comet.[5] It is observed by astronomers, that in the pairs of binary stars which we have mentioned, the two stars of each pair are of different colors; the stars being of a high yellow, approaching to orange color,[6] but the smaller individual being in each case of a deeper tint. This might suggest to us the conjecture that the smaller ma.s.s had cooled further below the point of high luminosity than the larger; but that both these degrees of light belong to a condition still progressive, and probably still gaseous. Without attaching any great value to such conjectures, they appear to be at least as well authorized as the supposition that each of these stars, thus different, is nevertheless precisely in the condition of our sun.

7. But, even granting that each of the individuals of this pair were a sun like ours, in the nature of its material and its state of condensation, is it probable that it resembles our Sun also in having planets revolving about it? A system of planets revolving around or among a pair of suns, which are, at the same time, revolving about one another, is so complex a scheme, so impossible to arrange in a stable manner, that the a.s.sumption of the existence of such schemes, without a vestige of evidence, can hardly require confutation. No doubt, if we were really required to provide such a binary system of suns with attendant planets, this would be best done by putting the planets so near to one sun, that they should not be sensibly affected by the other; and this is accordingly what has been proposed.[7] For, as has been well said of the supposed planets, in making this proposal, “Unless closely nestled under the protecting wing of their immediate superior, the sweep of the other sun in his perihelion pa.s.sage round their own, might carry them off, or whirl them into orbits utterly inconsistent with the existence of their inhabitants.” To a.s.sume the existence of the inhabitants, in spite of such dangers, and to provide against the dangers by placing them so close to one sun as to be out of the reach of the other, though the whole distance of the two may not, and as we have seen, in some cases does not, exceed the dimensions of our solar system, is showing them all the favor which is possible. But in making this provision, it is overlooked that it may not be possible to keep them in permanent orbits so near to the selected centre: their sun may be a vast sphere of luminous vapor; and the planets, plunged into this atmosphere, may, instead of describing regular orbits, plough their way in spiral paths through the nebulous abyss to its central nucleus.

8. Cl.u.s.tered stars, then, and double stars, appear to give us but little promise of inhabitants. We must next turn our attention to the single stars, as the most hopeful cases. Indeed, it is certain that no one would have thought of regarding the individual stars of cl.u.s.ters, or of pairs, as the centres of planetary systems, if the view of insulated stars, as the centres of such systems, had not already become familiar, and, we may say, established. What, then, is the probability of that view? Is there good evidence that the Fixed Stars, or some of them, really have planets revolving round them? What is the kind of proof which we have of this?

9. To this we must reply, that the only proof that the fixed stars are the centres of planetary systems, resides in the a.s.sumption that those stars are _like the Sun_;–resemble him in their qualities and nature, and therefore, it is inferred, must have the same offices, and the same appendages. They are, as the Sun is, independent sources of light, and thence, probably, of heat; and therefore they must have attendant planets, to which they can impart their light and heat; and these planets must have inhabitants, who live under and enjoy those influences. This is, probably, the kind of reasoning on which those rely, who regard the fixed stars as so many worlds, or centres of families of worlds.

10. Everything in this argument, therefore, depends upon this: that the Stars are _like the Sun_; and we must consider, what evidence we have of the exactness of this likeness.

11. The Stars are like the Sun in this, that they shine with an independent light, not with a borrowed light, as the planets shine. In this, however, the stars resemble, not only the Sun, but the nebulous patches in the sky, and the tails of comets; for these also, in all probability, shine with an original light. Probably it will hardly be urged that we see, by the very appearance of the stars, that they are of the nature of the Sun: for the appearance of luminaries in the sky is so far from enabling us to discriminate the nature of their light, that to a common eye, a planet and a fixed star appear alike as stars. There is no obvious distinction between the original light of the stars and the reflected light of the planets. The stars, then, being like the sun in being luminous, does it follow that they are, like the sun, definite dense[8] Or are they, or many of them, luminous in a far more diffused state; visually contracted to points, by the immense distance from us at which they are?

The Plurality of Worlds Part 2

If you are looking for The Plurality of Worlds Part 2 you are coming to the right place.
The Plurality of Worlds is a Webnovel created by Edward Hitchcock and William Whewell.
This lightnovel is currently completed.

10. That when we attempt to extend our sympathies to the inhabitants of other planets and other worlds, and to regard them as living, like us, under a moral government, we are driven to suppose them to be, in all essential respects, human beings like ourselves, we have proof, in all the attempts which have been made, with whatever license of hypothesis and fancy, to present to us descriptions and representations of the inhabitants of other parts of the universe. Such representations, though purposely made as unlike human beings as the imagination of man can frame them, still are merely combinations, slightly varied, of the elements of human being; and thus show us that not only our reason, but even our imagination, cannot conceive creatures subjected to the same government to which man is subjected, without conceiving them as being men of one kind or other. A mere animal life, with no interest but animal enjoyment, we may conceive as a.s.suming forms different from those which appear in existing animal races; though even here, there are, as we shall hereafter attempt to show, certain general principles which run through all animal life. But when in addition to mere animal impulses, we a.s.sume or suppose moral and intellectual interests, we conceive them as the moral and intellectual interests of man. Truth and falsehood, right and wrong, law and transgression, happiness and misery, reward and punishment, are the necessary elements of all that can interest us–of all that we can call _Government_. To transfer these to Jupiter or to Sirius, is merely to imagine those bodies to be a sort of island of Formosa, or new Atlantis, or Utopia, or Platonic Polity, or something of the like kind. The boldest and most resolute attempts to devise some life different from human life, have not produced anything more different than romance-writers and political theorists have devised _as_ a form of human life. And this being so, there is no more wisdom or philosophy in believing such a.s.semblages of beings to exist in Jupiter or Sirius, without evidence, than in believing them to exist in the island of Formosa, with the like absence of evidence.

11. Any examination of what has been written on this subject would show that, in speculating about moral and intellectual beings in other regions of the universe, we merely make them to be men in another place.

With regard to the plants and animals of other planets, fancy has freer play; but man cannot conceive any moral creature who is not man. Thus Fontenelle, in his _Dialogues on the Plurality of Worlds_, makes the inhabitants of Venus possess, in an exaggerated degree, the characteristics of the men of the warm climates of the earth. They are like the Moors of Grenada; or rather, the Moors of Grenada would be to them as cold as Greenlanders and Laplanders to us. And the inhabitants of Mercury have so much vivacity, that they would pa.s.s with us for insane. “Enfin c’est dans Mercure que sont les Pet.i.tes-Maisons de l’Univers.” The inhabitants of Jupiter and Saturn are immensely slow and phlegmatic. And though he and other writers attempt to make these inhabitants of remote regions in some respects superior to man, telling us that instead of only five senses, they may have six, or ten, or a hundred, still these are mere words which convey no meaning; and the great astronomer Bessel had reason to say, that those who imagined inhabitants in the Moon and Planets, supposed them, in spite of all their protestations, as like to men as one egg to another.[1]

12. But there is one step more, which we still have to make, in order to bring out this difficulty in its full force. As we have said, the moral law has been, to a certain extent, established, developed, and enforced among men. But, as I have also said, looking carefully at the law, and at the degree of man’s obedience to it, and at the operation of the sanctions by which it is supported, we cannot help seeing, that man’s knowledge of the law is imperfect, his conviction of its authority feeble, his transgressions habitual, their punishment and consequences obscure. When, therefore, we regard G.o.d, as the Lawgiver and Judge of man, it will not appear strange to us, that he should have taken some mode of promulgating his Law, and announcing his Judgments, in addition to that ordinary operation of the faculties of man, of which we have spoken. Revealed Religion teaches us that he has done so: that from the first placing of the race of man upon the earth, it was his purpose to do so: that by his dealing with the race of man in the earlier times, and at various intervals, he made preparation for the mission of a special Messenger, whom, in the fulness of time, he sent upon the earth in the form of a man; and who both taught men the Law of G.o.d in a purer and clearer form than any in which it had yet been given; and revealed His purpose, of rewards for obedience, and punishments for disobedience, to be executed in a state of being to which this human life is only an introduction; and established the means by which the spirit of man, when alienated from G.o.d by transgression, may be again reconciled to Him. The arrival of this especial Messenger of Holiness, Judgment, and Redemption, forms the great event in the history of the earth, considered in a religious view, as the abode of G.o.d’s servants. It was attended with the sufferings and cruel death of the Divine Messenger thus sent; was preceded by prophetic announcements of his coming; and the history of the world, for the two thousand years that have since elapsed, has been in a great measure occupied with the consequences of that advent. Such a proceeding shows, of course, that G.o.d has an especial care for the race of man. The earth, thus selected as the theatre of such a scheme of Teaching and of Redemption, cannot, in the eyes of any one who accepts this Christian faith, be regarded as being on a level with any other domiciles. It is the Stage of the great Drama of G.o.d’s Mercy and Man’s Salvation; the Sanctuary of the Universe; the Holy Land of Creation; the Royal Abode, for a time at least, of the Eternal King. This being the character which has thus been conferred upon it, how can we a.s.sent to the a.s.sertions of Astronomers, when they tell us that it is only one among millions of similar habitations, not distinguishable from them, except that it is smaller than most of them that we can measure; confused and rude in its materials like them? Or if we believe the Astronomers, will not such a belief lead us to doubt the truth of the great scheme of Christianity, which thus makes the earth the scene of a special dispensation.

13. This is the form in which Chalmers has taken up the argument. This is the difficulty which he proposes to solve; or rather, (such being as I have said the mode in which he presents the subject,) the objection which he proposes to refute. It is the bearing of the Astronomical discoveries of modern times, not upon the doctrines of Natural Religion, but upon the scheme of Christianity, which he discusses. And the question which he supposes his opponent to propound, as an objection to the Christian scheme, is:–How is it consistent with the dignity, the impartiality, the comprehensiveness, the a.n.a.logy of G.o.d’s proceedings, that he should make so special and pre-eminent a provision for the salvation of the inhabitants of this Earth, where there are such myriads of other worlds, all of which may require the like provision, and all of which have an equal claim to their Creator’s care?

14. The answer which Chalmers gives to this objection, is one drawn, in the first instance, from our ignorance. He urges that, when the objector a.s.serts that other worlds may have the like need with our own, of a special provision for the rescue of their inhabitants from the consequences of the transgression of G.o.d’s laws, he is really making an a.s.sertion without the slightest foundation. Not only does Science not give us any information on such subjects, but the whole spirit of the scientific procedure, which has led to the knowledge which we possess, concerning other planets and other systems, is utterly opposed to our making such a.s.sumptions, respecting other worlds, as the objection involves. Modern Science, in proportion as she is confident when she has good grounds of proof, however strange may be the doctrines proved, is not only diffident, but is utterly silent, and abstains even from guessing, when she has no grounds of proof. Chalmers takes Newton’s reasoning, as offering a special example of this mixed temper, of courage in following the evidence, and temperance in not advancing when there is no evidence. He puts, in opposition to this, the example of the true philosophical temper,–a supposed rash theorist, who should make unwarranted suppositions and a.s.sumptions, concerning matters to which our scientific evidence does not reach;–the animals and plants, for instance, which are to be found in the planet Jupiter. No one, he says, would more utterly reject and condemn such speculations than Newton, who first rightly explained the motion of Jupiter and of his attendant satellites, about which Science _can_ p.r.o.nounce her truths. And thus, nothing can be more opposite to the real spirit of modern science, and astronomy in particular, than arguments, such as we have stated, professing to be drawn from science and from astronomy. Since we know nothing about the inhabitants of Jupiter, true science requires that we say and suppose nothing about them; still more requires that we should not, on the ground of a.s.sumptions made with regard to them, and other supposed groups of living creatures, reject a belief, founded on direct and positive proofs, such as is the belief in the truths of Natural and of Revealed Religion.

15. To this argument of Chalmers, we may not only give our full a.s.sent, but we may venture to suggest, in accordance with what we have already said, that the argument, when so put, is not stated in all its legitimate force. The a.s.sertion that the inhabitants of Jupiter have the same need as we have, of a special dispensation for their preservation from moral ruin, is not only as merely arbitrary an a.s.sumption, as any a.s.sertion could be, founded on a supposed knowledge of an a.n.a.logy between the botany of Jupiter, and the botany of the earth; but it is a great deal more so. There may be circ.u.mstances which may afford some reason to believe that something of the nature of vegetables grows on the surface of Jupiter; for instance, if we find that he is a solid globe surrounded by an atmosphere, vapor, clouds, showers. But, as we have already said, there is an immeasurable distance between the existence of unprogressive tribes of organized creatures, plants, or even animals, and the existence of a progressive creature, which can pa.s.s through the conditions of receiving, discerning, disobeying, and obeying a moral law; which can be estranged from G.o.d, and then reconciled to him. To a.s.sume, without further proof, that there are, in Jupiter, creatures of such a nature that these descriptions apply to them, is a far bolder and more unphilosophical a.s.sumption, than any that the objector could make concerning the botany of Jupiter; and therefore, the objection thus supposed to be drawn from our supposed knowledge, is very properly answered by an appeal to our really utter ignorance, as to the points on which the argument rests.

16. This appeal to our ignorance is the main feature in Chalmers’

reasonings, so far as the argument on the one side or the other has reference to science. Chalmers, indeed, pursues the argument into other fields of speculation. He urges, that not only we have no right to a.s.sume that other worlds require a redemption of the same kind as that provided for man, but that the very reverse maybe the case. Man maybe the only transgressor; and this, the only world that needed so great a provision for its salvation. We read in Scripture, expressions which imply that other beings, besides man, take an interest in the salvation of man. May not this be true of the inhabitants of other worlds, if such inhabitants there be? These speculations he pursues to a considerable length, with great richness of imagination, and great eloquence. But the suppositions on which they proceed are too loosely connected with the results of science, to make it safe for us to dwell upon them here.

17. I conceive, as I have said, that the argument with which Chalmers thus deals admits of answers, also drawn from modern science, which to many persons will seem more complete than that which is thus drawn from our ignorance. But before I proceed to bring forward these answers, which will require several steps of explanation, I have one or two remarks still to make.

18. Undoubtedly they who believe firmly both that the earth has been the scene of a Divine Plan for the benefit of man, and also that other bodies in the universe are inhabited by creatures who may have an interest in such a Plan, are naturally led to conjectures and imaginations as to the nature and extent of that interest. The religious poet, in his Night Thoughts, interrogates the inhabitants of a distant star, whether their race too has, in its history, events resembling the fall of man, and the redemption of man.

Enjoy your happy realms their golden age?

And had your Eden an abstemious Eve?

Or, if your mother fell are you redeemed?

And if redeemed, is your Redeemer scorned?

And such imaginations may be readily allowed to the preacher or the poet, to be employed in order to impress upon man the conviction of his privileges, his thanklessness, his inconsistency, and the like. But every form in which such reflections can be put shows how intimately they depend upon the nature and history of man. And when such reflections are made the source of difficulty or objection in the way of religious thought, and when these difficulties and objections are represented as derived from astronomical discoveries, it cannot be superfluous to inquire whether astronomy has really discovered any ground for such objections. To some persons it may be more grateful to remedy one a.s.sumption by another: the a.s.sumption of moral agents in other worlds, by the a.s.sumption of some operation of the Divine Plan in other worlds. But since many persons find great difficulty in conceiving such an operation of the Divine Plan in a satisfactory way; and many persons also think that to make such unauthorized and fanciful a.s.sumptions with regard to the Divine Plans for the government of G.o.d’s creatures is a violation of the humility, submission of mind, and spirit of reverence which religion requires; it may be useful if we can show that such a.s.sumptions, with regard to the Divine Plans, are called forth by a.s.sumptions equally gratuitous on the other side: that Astronomy no more reveals to us extra-terrestrial moral agents, than Religion reveals to us extra-terrestrial Plans of Divine government. Chalmers has spoken of the _rashness_ of making a.s.sumptions on such subjects without proof; leaving it however, to be supposed, that though astronomy does not supply proof of intelligent inhabitants of other parts of the universe, she yet does offer strong a.n.a.logies in favor of such an opinion. But such a procedure is more than rash: when astronomical doctrines are presented in the form in which they have been already laid before the reader, which is the ordinary and popular mode of apprehending them, the a.n.a.logies in favor of “other worlds,” are (to say the least) greatly exaggerated. And by taking into account what astronomy really teaches us, and what we learn also from other sciences, I shall attempt to reduce such “a.n.a.logies” to their true value.

14. The privileges of man, which make the difficulty in a.s.signing him his place in the vast scheme of the Universe, we have described as consisting in his being an _intellectual_, _moral_, and _religious_ creature. Perhaps the privileges implied in the last term, and their place in our argument, may justify a word more of explanation. Religion teaches us that there is opened to man, not only a prospect of a life in the presence of G.o.d, after this mortal life, but also the possibility and the duty of spending this life as in the presence of G.o.d. This is properly the highest result and manifestation of the effect of Religion upon man. Precisely because it is this, it is difficult to speak of this effect without seeming to use the language of enthusiasm; and yet again, precisely because it is so, our argument would be incomplete without a reference to it. There is for man, a possibility and a duty of bringing his thoughts, purposes, and affections more and more into continual unison with the will of G.o.d. This, even Natural Religion taught men, was the highest point at which man could aim; and Revealed Religion has still more clearly enjoined the duty of aiming at such a condition. The means of a progress towards such a state belong to the Religion of the heart and mind. They include a constant purification and elevation of the thoughts, affections, and will, wrought by habits of religious reflection and meditation, of prayer and grat.i.tude to G.o.d.

Without entering into further explanation, all religious persons will agree that such a progress is, under happy influences, possible for man, and is the highest condition to which he can attain in this life.

Whatever names may have been applied at different times to the steps of such a progress;–the cultivation of the divine nature in us; resignation; devotion; holiness; union with G.o.d; living in G.o.d, and with G.o.d in us;–religious persons will not doubt that there is a reality of internal state corresponding to these expressions; and that, to be capable of elevation into the condition which these expressions indicate, is one of the especial privileges of man. Man’s soul, considered especially as the subject of G.o.d’s government, is often called his _Spirit_; and that man is capable of such conformity to the will of G.o.d, and approximation to Him, is sometimes expressed by speaking of him as a _spiritual creature_. And though the privilege of being, or of being capable of becoming, in this sense, a spiritual creature, is a part of man’s religious privileges; we may sometimes be allowed to use this additional expression, in order to remind the reader, how great those religious privileges are, and how close is the relation between man and G.o.d, which they imply.

15. We have given a view of the peculiar character of man’s condition, which seem to claim for him a nature and place unique and incapable of repet.i.tion, in the scheme of the universe; and to this view astronomy, exhibiting to us the habitation of man as only one among many similar abodes, offers an objection. We are, therefore, now called upon, I conceive, to proceed to exhibit the answer which a somewhat different view of modern science suggests to this difficulty or objection.

For this purpose, we must begin by regarding the Earth in another point of view, different from that hitherto considered by us.


[1] Populare Vorlesungen uber Wissenschaftliche Gegenstande, p. 31.



1. Man, as I trust has been made apparent to the consciousness and conviction of the reader, is an intelligent, moral, religious, and spiritual creature; and we have to discuss the difficulty, or perplexity, or objection, which arises in our minds, when we consider such a creature as occupying an habitation, which is but one among many globes apparently equally fitted to be the dwelling-places of living things–a mere speck in the immensity of creation–an atom among such a vast array of material structures–a world, as we needs must deem it, among millions of other objects which appear to have an equal claim to be regarded as worlds.

2. The difficulty appears to be great, either way. Can the earth alone be the theatre of such intelligent, moral, religious, and spiritual action? On the other hand, can we conceive such action to go on in the other bodies of the universe? If we take the latter alternative, we must people other planets and other systems with men such as we are, even as to their history. For the intellectual and moral condition of man implies a _history_ of the species; and the view of man’s condition which religion presents, not only involves a scheme of which the history of the human race is a part, but also a.s.serts a peculiar reference had, in the provisions of G.o.d, to the nature of man; and even a peculiar relation and connection between the human and the divine nature. To extend such suppositions to other worlds would be a proceeding so arbitrary and fanciful, that we are led to consider whether the alternative supposition may not be more admissible. The alternative supposition is, that man is, in an especial and eminent manner, the object of G.o.d’s care; that his place in the creation is, not that he merely occupies one among millions of similar domiciles provided in boundless profusion by the Creator of the Universe, but that he is the servant, subject, and child of G.o.d, in a way unique and peculiar; that his being a spiritual creature, (including his other attributes in the highest for the sake of brevity,) makes him belong to a spiritual world, which is not to be judged of merely by a.n.a.logies belonging to the material universe.

3. Between these two difficulties the choice is embarra.s.sing, and the decision must be unsatisfactory, except we can find some further ground of judgment. But perhaps this is not hopeless. We have hitherto referred to the evidence and a.n.a.logies supplied by one science, namely, astronomy. But there are other sciences which give us information concerning the nature and history of the earth. From some of these, perhaps, we may obtain some knowledge of the place of the earth in the scheme of creation–how far it is, in its present condition, a thing unique, or only one thing among many like it. Any science which supplies us with evidence or information on this head, will give us aid in forming a judgment upon the question under our consideration. To such sciences, then, we will turn our attention.

One science has employed itself in investigating the nature and history of the earth by an examination of the materials of which it is composed; namely, Geology. Let us call to mind some of the results at which this science has arrived.

4. A very little attention to what is going on among the materials of which the earth’s surface is composed, suffices to show us that there are causes of change constantly and effectually at work. The earth’s surface is composed of land and water, hills and valleys, rocks and rivers. But these features undergo change, and produce change in each other. The mountain-rivers cut deeper and deeper into the ravines in which they run; they break up the rocks over which they rush, use the fragments as implements of further destruction, pile them up in sloping mounds where the streams issue from the mountains, spread them over the plains, fill up lakes with sediment, push into the sea great deltas. The sea batters the cliffs and eats away the land, and again, forms banks and islands where there had been deep water. Volcanoes pour out streams of lava, which destroy the vegetation over which they flow, and which again, after a series of years, are themselves clothed with vegetation.

Earthquakes throw down tracts of land beneath the sea, and elevate other tracts from the bottom of the ocean. These agencies are everywhere manifest; and though at a given moment, at a given spot, their effect may seem to us almost imperceptible, too insignificant to be taken account of, yet in a long course of years almost every place has undergone considerable changes. Rivers have altered their courses, lakes have become plains, coasts have been swept away or have become inland districts, rich valleys have been ravaged by watery or fiery deluges, the country has in some way or other a.s.sumed a new face. The present aspect of the earth is in some degree different from what it was a few thousand years ago.

5. But yet, in truth, the changes of which we thus speak have not been very considerable. The forms of countries, the lines of coasts, the ranges of mountains, the groups of valleys, the courses of rivers, are much the same now as they were in ancient times. The face of the earth, since man has had any knowledge of it, may have undergone some change, but the changeable has borne a small proportion to the permanent.

Changes have taken place, and are taking place, but they do not take place rapidly. The ancient earth and the modern earth are, in all their main physical features, identical; and we must go backwards through a considerably larger interval than that which carries us back to what we usually term _antiquity_, before we are led, by the operation of causes now at work, to an aspect of the earth’s surface very different from that which it now presents.

6. For instance, rivers do, no doubt, more or less alter, in the course of years, by natural causes. The Rhine, the Rhone, the Po, the Danube, have, certainly, during the last four thousand years, silted up their beds in level places, expanded the deltas at their mouths, changed the channels by which they enter the sea; and very probably, in their upper parts, altered the forms of their waterfalls and of their shingle beds.

Yet even if we were thus to go backwards ten thousand, or twenty, or thirty thousand years, (setting aside great and violent causes of change, as earthquakes, volcanic eruptions, and the like,) the general form and course of these rivers, and of the ranges of mountains in which they flow, would not be different from what it is now. And the same may be said of coasts and islands, seas and bays. The present geography of the earth may be, and from all the evidence which we have, must be, very ancient, according to any measures of antiquity which can apply to human affairs.

7. But yet the further examination of the materials of the earth carries us to a view beyond this. Though the general forms of the land and the waters of continents and seas, were, several thousand years ago, much the same as they now are; yet it was not always so. We have clear evidence that large tracts which are now dry ground, were formerly the bed of the ocean; and these, not tracts of the sh.o.r.e, where the varying warfare of sea and land is still going on, but the very central parts of great continents; the Alps, the Pyrenees, the Himalayas. For not only are the rocks of which these great mountain-chains consist, of such structure that they appear to have been formed as layers of sediment at the bottom of water; but also, these layers contain vast acc.u.mulations of, or impressions of, and other remains of marine animals. And these appearances are not few, limited, or partial. The existence of such marine remains, in the solid substance of continents and mountains, is a general, predominant, and almost universal fact, in every part of the earth. Nor is any other way of accounting for this fact admissible, than that those materials really have, at some time, formed bottoms of seas. The various other conjectures and hypotheses, which were put forward on this subject, when the amount, extent, multiplicity, and coherence of the phenomena were not yet ascertained, and when their natural history was not yet studied, cannot now be considered as worthy of the smallest regard. That many of our highest hills are formed of materials raised from the depths of ocean, is a proposition which cannot be doubted, by any one, who fairly examines the evidence which nature offers.

8. If we take this proposition only, we cannot immediately connect it with our knowledge respecting the surface of the earth in its present form. We learn that what is now land, has been sea; and we may suppose (since it is natural to a.s.sume that the bulk of the sea has not much changed) that what is now sea was formerly land. But, except we can learn something of the manner in which this change took place, we cannot make any use of our knowledge. Was the change sudden, or gradual; abrupt, or successive; brief, or long-continuing?

9. To these questions, the further study of the facts enables us to return answers with great confidence. The change or changes which produced the effects of which we have spoken–the conversion of the bottom of the ocean into the centre of our greatest continents and highest mountains,–were undoubtedly gradual, successive, and long continued. We must state very briefly the grounds on which we make this a.s.sertion.

10. The which form our mountain-chains, offer evidence, as I have said, that they were deposited as sediment at the bottom of a sea, and then hardened. They consist of successive layers of such sediment, making up the whole ma.s.s of the mountain. These layers are, of course, to a certain extent, a measure of the time during which the deposition of sediment took place. The thicker the ma.s.s of sediment, the more numerous and varied its beds, and the longer period must we suppose to have been requisite for its formation. Without making any attempt at accurate or definite estimation, which would be to no purpose, it is plain that a ma.s.s of sedimentary strata five thousand or ten thousand feet thick, must have required, for its deposit, a long course of years, or rather, a long course of ages.

11. But again: on further examination it is found, that we have not merely one series of sedimentary deposits, thus forming our mountains.

There are a number of different series of such layers or strata, to be found in different ranges of hills, and in the same range, one series resting upon another. These different series of strata are distinguishable from one another by their general structure and appearance, besides more intimate characters, of which we shall shortly have to speak. Each such series appears to have a certain consistency of structure within itself; the layers of which it is composed being more or less parallel, but the successive series are not thus always parallel, the lower ones being often highly inclined and irregular, while the upper ones are more level and continuous: as if the lower strata had been broken up and thrown into disorder, and then a new series of strata had been deposited horizontally on their fragments. But in whatever way these different sedimentary series succeeded each other, each series must have required, as we have seen, a long period for its formation; and to estimate the length of the interval between the two series, we have, at the present stage of our exposition, no evidence.

12. But the mechanical structure of the strata, the result, as it seems, of aqueous sedimentary deposit, is not the only, nor the most important evidence, with regard to the length of time occupied by the formation of the rocky layers which now compose our mountains. As we have said, they contain, and other remains of creatures which live in the sea.

These they contain, not in small numbers, scattered and detached, but in vast abundance, as they are found in those parts of the ocean which is most alive with them. There are the remains of oysters and other sh.e.l.l-fish in layers, as they live at present in the seas near our; of corals, in vast patches and beds, as they now occur in the waters of the Pacific; of shoals of fishes, of many different kinds, in immense abundance. Each of these beds of, of corals, and of fishes, must have required many years, perhaps many centuries, for the growth of the successive individuals and successive generations of which it consists: as long a time, perhaps, as the present inhabitants of the sea have lived therein: or many times longer, if there have been many such successive changes. And thus, while the present condition of the earth extends backwards to a period of vast but unknown antiquity; we have, offered to our notice, the evidence of a series of other periods, each of which, so far as we can judge, may have been as long or longer than that during which the dry land has had its present form.

13. But the most remarkable feature in the evidence is yet to come. We have spoken in general of the oysters, and corals, and fishes, which occur in the strata of our hills; as if they were creatures of the same kinds which we now designate by those names. But a more exact examination of these remains of organized beings, shows that this is not so. The tribes of animals which are found petrified in our rocks are almost all different, so far as our best natural historians can determine, from those which now live in our existing seas. They are different species; different genera. The creatures which we find thus embedded in our mountains, are not only dead as individuals, but extinct as species. They belonged, not only to a terrestrial period, but to an animal creation, which is now past away. The earth is, it seems, a domicile which has outlasted more than one race of tenants.

14. It may seem rash and presumptuous in the natural historian to p.r.o.nounce thus peremptorily that certain forms of life are nowhere to be found at present, even in the unfathomable and inaccessible depths of the ocean. But even if this were so, the proposition that the earth has changed its inhabitants, since the rocks were formed, of which our hills consist, does not depend for its proof on this a.s.sumption. For in the organic bodies which our strata contain, we find remains, not only of marine animals, but of animals which inhabit the fresh waters, and the land, and of plants. And the examination of such remains having been pursued with great zeal, and with all the aids which natural history can supply, the result has been, the proofs of a vast series of different tribes of animals and plants, which have successively occupied the earth and the seas; and of which the number, variety, multiplicity, and strangeness, exceed, by far, everything which could have been previously imagined. Thus Cuvier found, in the limestone strata on which Paris stands, animals of the most curious forms, combining in the most wonderful manner the qualities of different species of existing quadrupeds. In another series of strata, the Lias, which runs as a band across England from N. E. to S. W., we have the remains of lizards, or lacertine animals, different from those which now exist, of immense size and of extraordinary structure, some approaching to the form of fishes (_ichthyosaurus_); others, with the neck of a serpent; others with wings, like the fabled forms of dragons. Then beyond these, that is, anterior to them in the series of time, we have the immense collection of fossil plants, which occur in the Coal Strata; the and corals of the Mountain Limestone; the peculiar fishes, different altogether from existing fishes, of the Old Red Sandstone; and though, as we descend lower and lower, the traces of organic life appear to be more rare and more limited in kind, yet still we have, beneath these, in slates and in beds of limestone, many fossil remains, still differing from those which occur in the higher, and therefore, newer strata.

15. We have no intention of inst.i.tuting any definite calculation with regard to the periods of time which this succession of forms of organic life may have occupied. This, indeed, the boldest geological speculators have not ventured to do. But the scientific discoveries thus made, have a bearing upon the a.n.a.logies of creation, quite as important as the discoveries of astronomy. And therefore we may state briefly some of the divisions of the series of terrestrial strata which have suggested themselves to geological inquirers. At the outset of such speculations, it was conceived that the lower rocks, composed of granite, slate, and the like, had existed before the earth was peopled with living things; and that these, being broken up into inclined positions, there were deposited upon them, as the sediment of superinc.u.mbent waters, strata more horizontal, containing organic remains. The former were then called _Primitive_ or _Primary_, the latter, _Secondary_ rocks. But it was soon found that this was too sweeping and peremptory a division. Rocks which had been cla.s.sed as Primary, were found to contain traces of life; and hence, an intermediate cla.s.s of _Transition_ strata was spoken of. But this too was soon seen to be too narrow a scheme of arrangement, to take in the rapidly-acc.u.mulating ma.s.s of facts, organic and others, which the geological record of the earth’s history disclosed. It appeared that among the fossil-bearing strata there might be discerned a long series of Formations: the term _Formation_ being used to imply a collection of successive strata, which, taking into account all the evidence, of materials, position, relations, and organic remains, appears to have been deposited during some one epoch or period; so as to form a natural group, chronologically and physiologically distinct from the others. In this way it appeared that, taking as the highest part of the Secondary series, the beds of chalk, which, marked by characteristic fossils, run through great tracts of Europe, with other beds, of sand and clay, which generally accompany these; there was, below this _Cretaceous Formation_, an _Oolitic Formation_, still more largely diffused, and still more abundant in its peculiar organic remains. Below this, we have, in England, the _New Red Sandstone Formation_, which, in other countries, is accompanied by beds abundant in fossils, as the _Muschelkalk_ of Germany. Below this again we have the _Coal Formation_, and the _Mountain Limestone_, with their peculiar fossils. Below these, we have the Old Red Sandstone or Devonian System, with its peculiar fishes and other fossils. Beneath these, occur still numerous series of distinguishable strata; which have been arranged by Sir Roderick Murchison as the members of the _Silurian_ formation; the researches by which it was established having been carried on, in the first place, in South Wales, the ancient country of the Silures. Including the lower part of this formation, and descending still lower in order, is the _Cambrian_ formation of Professor Sedgwick. And since the races of organic beings, as we thus descend through successive strata, seem to be fewer and fewer in their general types, till at last they disappear; these lower members of the geological series have been termed, according to their succession, _Palaeozoic_, _Protozoic_, and _Hypozoic_ or _Azoic_. The general impression on the minds of geologists has been, that, as we descend in this long staircase of natural steps, we are brought in view of a state of the earth in which life was scantily manifested, so as to appear to be near its earliest stages.

16. Each of these formations is of great thickness. Several of the members of each formation are hundreds, many of them thousands of feet thick. Taken altogether, they afford an astounding record of the time during which they must have been acc.u.mulating, and during which these successive groups of animals must have been brought into being, lived, and continued their kinds.

17. We must add, that over the Secondary strata there are found, in patches, generally of more limited extent, another, and of course, newer ma.s.s of strata, which have been termed _Tertiary Formations_. Of these, the strata, near and under Paris, lying in a hollow of the subjacent strata, and hence termed the _Paris Basin_, attracted prominent notice in the first place. And these are found to contain an immense quant.i.ty of remains of animals, which, being well preserved, and being subjected to a careful and scientific scrutiny by the great naturalist George Cuvier, had an eminent share in establishing in the minds of Geologists the belief of the extinct character of fossil species, and of the possibility of reconstructing, from such remains, the animals, different from those which now live, which had formerly tenanted the earth.

18. We have, in this enumeration, a series of groups of strata, each of which, speaking in a general way, has its own population of animals and plants, and is separated, by the peculiarities of these, from the groups below and above it. Each group may, in a general manner, be considered as a separate creation of animal and vegetable forms–creatures which have lived and died, as the races now existing upon the earth live and die; and of which the living existence may, and according to all appearance must, have occupied ages, and series of ages, such as have been occupied by the present living generations of the earth. This series of creations, or of successive periods of life, is, no doubt, a very striking and startling fact, very different from anything which the imagination of man, in previous stages of investigation of the earth’s condition, had conceived; but still, is established by evidence so complete, drawn from an examination and knowledge of the structures of living things so exact and careful, as to leave no doubt whatever of the reality of the fact, on the minds of those who have attended to the evidence; founded, as it is, upon the a.n.a.logies, offices, anatomy, and combinations of organic structures. The progress of human knowledge on this subject has been carried on and established by the same alternations of bold conjectures and felicitous confirmations of them,–of minute researches and large generalizations,–which have given reality and solidity to the other most certain portions of human knowledge. That the strata of the earth, as we descend from the highest to the lowest, are distinguished in general by characteristic or organic fossils, and that these forms of organization are different from those which now live on the earth, are truths as clearly and indisputably established in the minds of those who have the requisite knowledge of geology and natural history, as that the planets revolve round the sun, and satellites round the planets. That these epochs of creation are something quite different from anything which we now see taking place on the earth, no more disturbs the belief of those facts, which scientific explorers entertain, than the seemingly obvious difference between the nebulae which are regarded as yet unformed planetary systems, and the solar system to which our earth belongs, disturbs the belief of astronomers, that such nebulae, as well as our system, really exist.

Indeed we may say, as we shall hereafter see, that the fact of our earth having pa.s.sed through the series of periods of organic life which geologists recognize, is, hitherto, incomparably better established, than the fact that the nebulae, or any of them, are pa.s.sing through a series of changes, such as may lead to a system like ours; as some eminent astronomers in modern times have held. In this respect, the history of the world, and its place in the universe, are far more clearly learnt from geology than from astronomy.

19. But with regard to this series of Organic _Creations_, if, for the sake of brevity, we may call them so; we may naturally ask, in what manner, by what agencies, at what intervals, they succeeded each other on the earth? Now, do the researches of geologists give us any information on these points, which may be brought to bear upon our present speculations? If we ask these questions, we receive, from different of geologists, different answers. A little while ago, most geologists held, probably the greater number still hold, that the transitions from one of these periods of organic life to another, were accompanied generally by seasons of violent disruption and mutation of the surface of the earth, exceeding anything which has taken place since the surface a.s.sumed its present general form; in the same proportion as the changes of its organic population go beyond any such changes which we can discern to be at present in operation. And there were found to be changes of other kinds, which seemed to show that these epochs of organic transition had also been epochs of mechanical violence, upon a vast and wonderful scale. It appeared that, at some of these epochs at least, the strata previously deposited, as if in comparative tranquillity, had been broken, thrust up from below, or drawn or cast downwards; so that strata which must at first have been nearly level, were thrown into positions highly inclined, fractured, set on edge, contorted, even inverted. Over the broken edges of these strata, thus disturbed and fractured, were found vast acc.u.mulations of the fragments which such rude treatment might naturally produce; these fragmentary ruins being spread in beds comparatively level, over the bristling edges of the subjacent rocks, as if deposited in the fluid which had overwhelmed the previous structure; and with few or no traces of life appearing in this ma.s.s of ruins; while, in the strata which lay over them, and which appeared to have been the result of quieter times, new forms of organic life made their appearance in vast abundance. Such is, for example, the relation of the coal strata in a great part of England; broken into innumerable basins, ridges, valleys, strips, and shreds, lying in all positions; and then filled into a sort of level, by the conglomerate of the magnesian limestone, and the superinc.u.mbent red sandstone and oolites. In other cases it appeared as if there were the means of tracing, in these dislocations, the agency of igneous stony matter, which had been injected from below, so as to form mountain-chains, or the cores of such; and in which the period of the convulsion could be traced, by the strata to which the disturbance extended; _those_ strata being supposed to have been deposited before the eruption, which were thrust upwards by it into highly-inclined positions; while those strata which, though near to these scenes of mechanical violence, were still comparatively horizontal, as they had been originally deposited, were naturally inferred to have been formed in the waters, after the catastrophe had pa.s.sed away. By such reasonings as these, M. Elie de Beaumont has conceived that he can ascertain the relative ages (according to the vast and loose measurements of age which belong to this subject) of the ranges of mountains of the earth’s surface.

20. Such estimations of age can, indeed, as we have intimated, be only of the widest and loosest kind; yet they all concur in a.s.signing very great and gigantic periods of time, as having been occupied by the events which have formed the earth’s strata, and brought them into their present position. For not only must there have been long ages employed, as we have said, while the successive generations of each group of animals lived, and died, and were entombed in the abraded fragments of the then existing earth; but the other operations which intervened between these apparently more tranquil processes, must also have occupied, it would seem, long ages at each interval. The dislocation, disruption, and contortion of the vast of previously existing mountains, by which their framework was broken up, and its ruins covered with beds of its own rubbish, many thousand feet thick, and gradually becoming less coa.r.s.e and smoother, as the higher beds were deposited upon the lower, could hardly take place, it would seem, except in hundreds and thousands of years. And then again, all these processes of deposition, thus arranging loose of material into level beds, must have taken place in the bottom of deep oceans; and the beds of these oceans must have been elevated into the position of mountain ridges which they now occupy, by some mighty operation of nature, which must have been comparatively tranquil, since it has not much disturbed those more level beds; and which, therefore, must have been comparatively long continued. If we accept, as so many eminent geologists have done, this evidence of a vast series of successive periods of alternate violence and repose, we must a.s.sign to each such period a duration which cannot but be immense, compared with the periods of time with which we are commonly conversant. In the periods of comparative quiet, such as now exist on the earth’s surface, and such as seem to be alone consistent with continued life and successive generation, deposits at the bottom of lakes and seas take place, it would seem, only at the rate of a few feet in a year, or perhaps, in a century. When, therefore, we find strata, bearing evidence of such a mode of deposit, and piled up to the amount of thousands and tens of thousands of feet, we are naturally led to regard them as the production of myriads of years; and to add new myriads, as often as, in the prosecution of geological research, we are brought to new of strata of the like kind; and again, to interpolate new periods of the same order, to allow for the transition from one such group to another.

21. Nor is there anything which need startle us, in the necessity of a.s.suming such vast intervals of time, when we have once brought ourselves to deal with the question of the antiquity of the earth upon scientific evidence alone. For if geology thus carries us far backwards through thousands, it may be, millions of years, astronomy does not offer the smallest argument to check this regressive supposition. On the contrary, all the most subtle and profound investigations of astronomers have led them to the conviction, that the motions of the earth may have gone on, as they now go on, for an indefinite period of past time. There is no tendency to derangement in the mechanism of the solar system, so for as science has explored it. Minute inequalities in the movements exist, too small to produce any perceptible effect on the condition of the earth’s surface; and even these inequalities, after growing up through long cycles of ages, to an amount barely capable of being detected by astronomical scrutiny, reach a maximum; and, diminishing by the same slow degrees by which they increased, correct themselves, and disappear. The solar system, and the earth as part of it, const.i.tute, so for as we can discover, a Perpetual Motion.

22. There is therefore nothing, in what we know of the Cosmical conditions of our globe, to contradict the Terrestrial evidence for its vast antiquity, as the seat of organic life. If for the sake of giving definiteness to our notions, we were to a.s.sume that the numbers which express the antiquity of these four Periods;–the Present organic condition of the earth; the Tertiary Period of geologists, which preceded that; the Secondary Period, which was anterior to that; and the Primary Period which preceded the Secondary; were on the same scale as the numbers which express these four magnitudes:–the magnitude of the Earth; that of the Solar System compared with the Earth; the distance of the nearest Fixed Stars compared with the solar system; and the distance of the most remote Nebulae compared with the nearest fixed stars; there is, in the evidence which geological science offers, nothing to contradict such an a.s.sumption.